This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subclass of a restricted class abstraction. (Contributed by NM, 16-Aug-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ssrab | |- ( B C_ { x e. A | ph } <-> ( B C_ A /\ A. x e. B ph ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rab | |- { x e. A | ph } = { x | ( x e. A /\ ph ) } |
|
| 2 | 1 | sseq2i | |- ( B C_ { x e. A | ph } <-> B C_ { x | ( x e. A /\ ph ) } ) |
| 3 | ssab | |- ( B C_ { x | ( x e. A /\ ph ) } <-> A. x ( x e. B -> ( x e. A /\ ph ) ) ) |
|
| 4 | dfss3 | |- ( B C_ A <-> A. x e. B x e. A ) |
|
| 5 | 4 | anbi1i | |- ( ( B C_ A /\ A. x e. B ph ) <-> ( A. x e. B x e. A /\ A. x e. B ph ) ) |
| 6 | r19.26 | |- ( A. x e. B ( x e. A /\ ph ) <-> ( A. x e. B x e. A /\ A. x e. B ph ) ) |
|
| 7 | df-ral | |- ( A. x e. B ( x e. A /\ ph ) <-> A. x ( x e. B -> ( x e. A /\ ph ) ) ) |
|
| 8 | 5 6 7 | 3bitr2ri | |- ( A. x ( x e. B -> ( x e. A /\ ph ) ) <-> ( B C_ A /\ A. x e. B ph ) ) |
| 9 | 2 3 8 | 3bitri | |- ( B C_ { x e. A | ph } <-> ( B C_ A /\ A. x e. B ph ) ) |