This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Existential quantification restricted to a subclass. (Contributed by NM, 11-Jan-2007) Avoid axioms. (Revised by GG, 19-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ssrexv | |- ( A C_ B -> ( E. x e. A ph -> E. x e. B ph ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ss | |- ( A C_ B <-> A. x ( x e. A -> x e. B ) ) |
|
| 2 | pm3.45 | |- ( ( x e. A -> x e. B ) -> ( ( x e. A /\ ph ) -> ( x e. B /\ ph ) ) ) |
|
| 3 | 2 | aleximi | |- ( A. x ( x e. A -> x e. B ) -> ( E. x ( x e. A /\ ph ) -> E. x ( x e. B /\ ph ) ) ) |
| 4 | df-rex | |- ( E. x e. A ph <-> E. x ( x e. A /\ ph ) ) |
|
| 5 | df-rex | |- ( E. x e. B ph <-> E. x ( x e. B /\ ph ) ) |
|
| 6 | 3 4 5 | 3imtr4g | |- ( A. x ( x e. A -> x e. B ) -> ( E. x e. A ph -> E. x e. B ph ) ) |
| 7 | 1 6 | sylbi | |- ( A C_ B -> ( E. x e. A ph -> E. x e. B ph ) ) |