This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Rolle's theorem. If F is a real continuous function on [ A , B ] which is differentiable on ( A , B ) , and F ( A ) = F ( B ) , then there is some x e. ( A , B ) such that ( RR _D F )x = 0 . (Contributed by Mario Carneiro, 1-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rolle.a | |- ( ph -> A e. RR ) |
|
| rolle.b | |- ( ph -> B e. RR ) |
||
| rolle.lt | |- ( ph -> A < B ) |
||
| rolle.f | |- ( ph -> F e. ( ( A [,] B ) -cn-> RR ) ) |
||
| rolle.d | |- ( ph -> dom ( RR _D F ) = ( A (,) B ) ) |
||
| rolle.e | |- ( ph -> ( F ` A ) = ( F ` B ) ) |
||
| Assertion | rolle | |- ( ph -> E. x e. ( A (,) B ) ( ( RR _D F ) ` x ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rolle.a | |- ( ph -> A e. RR ) |
|
| 2 | rolle.b | |- ( ph -> B e. RR ) |
|
| 3 | rolle.lt | |- ( ph -> A < B ) |
|
| 4 | rolle.f | |- ( ph -> F e. ( ( A [,] B ) -cn-> RR ) ) |
|
| 5 | rolle.d | |- ( ph -> dom ( RR _D F ) = ( A (,) B ) ) |
|
| 6 | rolle.e | |- ( ph -> ( F ` A ) = ( F ` B ) ) |
|
| 7 | 1 2 3 | ltled | |- ( ph -> A <_ B ) |
| 8 | 1 2 7 4 | evthicc | |- ( ph -> ( E. u e. ( A [,] B ) A. y e. ( A [,] B ) ( F ` y ) <_ ( F ` u ) /\ E. v e. ( A [,] B ) A. y e. ( A [,] B ) ( F ` v ) <_ ( F ` y ) ) ) |
| 9 | reeanv | |- ( E. u e. ( A [,] B ) E. v e. ( A [,] B ) ( A. y e. ( A [,] B ) ( F ` y ) <_ ( F ` u ) /\ A. y e. ( A [,] B ) ( F ` v ) <_ ( F ` y ) ) <-> ( E. u e. ( A [,] B ) A. y e. ( A [,] B ) ( F ` y ) <_ ( F ` u ) /\ E. v e. ( A [,] B ) A. y e. ( A [,] B ) ( F ` v ) <_ ( F ` y ) ) ) |
|
| 10 | 8 9 | sylibr | |- ( ph -> E. u e. ( A [,] B ) E. v e. ( A [,] B ) ( A. y e. ( A [,] B ) ( F ` y ) <_ ( F ` u ) /\ A. y e. ( A [,] B ) ( F ` v ) <_ ( F ` y ) ) ) |
| 11 | r19.26 | |- ( A. y e. ( A [,] B ) ( ( F ` y ) <_ ( F ` u ) /\ ( F ` v ) <_ ( F ` y ) ) <-> ( A. y e. ( A [,] B ) ( F ` y ) <_ ( F ` u ) /\ A. y e. ( A [,] B ) ( F ` v ) <_ ( F ` y ) ) ) |
|
| 12 | 1 | ad2antrr | |- ( ( ( ph /\ ( u e. ( A [,] B ) /\ v e. ( A [,] B ) ) ) /\ ( A. y e. ( A [,] B ) ( ( F ` y ) <_ ( F ` u ) /\ ( F ` v ) <_ ( F ` y ) ) /\ -. u e. { A , B } ) ) -> A e. RR ) |
| 13 | 2 | ad2antrr | |- ( ( ( ph /\ ( u e. ( A [,] B ) /\ v e. ( A [,] B ) ) ) /\ ( A. y e. ( A [,] B ) ( ( F ` y ) <_ ( F ` u ) /\ ( F ` v ) <_ ( F ` y ) ) /\ -. u e. { A , B } ) ) -> B e. RR ) |
| 14 | 3 | ad2antrr | |- ( ( ( ph /\ ( u e. ( A [,] B ) /\ v e. ( A [,] B ) ) ) /\ ( A. y e. ( A [,] B ) ( ( F ` y ) <_ ( F ` u ) /\ ( F ` v ) <_ ( F ` y ) ) /\ -. u e. { A , B } ) ) -> A < B ) |
| 15 | 4 | ad2antrr | |- ( ( ( ph /\ ( u e. ( A [,] B ) /\ v e. ( A [,] B ) ) ) /\ ( A. y e. ( A [,] B ) ( ( F ` y ) <_ ( F ` u ) /\ ( F ` v ) <_ ( F ` y ) ) /\ -. u e. { A , B } ) ) -> F e. ( ( A [,] B ) -cn-> RR ) ) |
| 16 | 5 | ad2antrr | |- ( ( ( ph /\ ( u e. ( A [,] B ) /\ v e. ( A [,] B ) ) ) /\ ( A. y e. ( A [,] B ) ( ( F ` y ) <_ ( F ` u ) /\ ( F ` v ) <_ ( F ` y ) ) /\ -. u e. { A , B } ) ) -> dom ( RR _D F ) = ( A (,) B ) ) |
| 17 | simpl | |- ( ( ( F ` y ) <_ ( F ` u ) /\ ( F ` v ) <_ ( F ` y ) ) -> ( F ` y ) <_ ( F ` u ) ) |
|
| 18 | 17 | ralimi | |- ( A. y e. ( A [,] B ) ( ( F ` y ) <_ ( F ` u ) /\ ( F ` v ) <_ ( F ` y ) ) -> A. y e. ( A [,] B ) ( F ` y ) <_ ( F ` u ) ) |
| 19 | fveq2 | |- ( y = t -> ( F ` y ) = ( F ` t ) ) |
|
| 20 | 19 | breq1d | |- ( y = t -> ( ( F ` y ) <_ ( F ` u ) <-> ( F ` t ) <_ ( F ` u ) ) ) |
| 21 | 20 | cbvralvw | |- ( A. y e. ( A [,] B ) ( F ` y ) <_ ( F ` u ) <-> A. t e. ( A [,] B ) ( F ` t ) <_ ( F ` u ) ) |
| 22 | 18 21 | sylib | |- ( A. y e. ( A [,] B ) ( ( F ` y ) <_ ( F ` u ) /\ ( F ` v ) <_ ( F ` y ) ) -> A. t e. ( A [,] B ) ( F ` t ) <_ ( F ` u ) ) |
| 23 | 22 | ad2antrl | |- ( ( ( ph /\ ( u e. ( A [,] B ) /\ v e. ( A [,] B ) ) ) /\ ( A. y e. ( A [,] B ) ( ( F ` y ) <_ ( F ` u ) /\ ( F ` v ) <_ ( F ` y ) ) /\ -. u e. { A , B } ) ) -> A. t e. ( A [,] B ) ( F ` t ) <_ ( F ` u ) ) |
| 24 | simplrl | |- ( ( ( ph /\ ( u e. ( A [,] B ) /\ v e. ( A [,] B ) ) ) /\ ( A. y e. ( A [,] B ) ( ( F ` y ) <_ ( F ` u ) /\ ( F ` v ) <_ ( F ` y ) ) /\ -. u e. { A , B } ) ) -> u e. ( A [,] B ) ) |
|
| 25 | simprr | |- ( ( ( ph /\ ( u e. ( A [,] B ) /\ v e. ( A [,] B ) ) ) /\ ( A. y e. ( A [,] B ) ( ( F ` y ) <_ ( F ` u ) /\ ( F ` v ) <_ ( F ` y ) ) /\ -. u e. { A , B } ) ) -> -. u e. { A , B } ) |
|
| 26 | 12 13 14 15 16 23 24 25 | rollelem | |- ( ( ( ph /\ ( u e. ( A [,] B ) /\ v e. ( A [,] B ) ) ) /\ ( A. y e. ( A [,] B ) ( ( F ` y ) <_ ( F ` u ) /\ ( F ` v ) <_ ( F ` y ) ) /\ -. u e. { A , B } ) ) -> E. x e. ( A (,) B ) ( ( RR _D F ) ` x ) = 0 ) |
| 27 | 26 | expr | |- ( ( ( ph /\ ( u e. ( A [,] B ) /\ v e. ( A [,] B ) ) ) /\ A. y e. ( A [,] B ) ( ( F ` y ) <_ ( F ` u ) /\ ( F ` v ) <_ ( F ` y ) ) ) -> ( -. u e. { A , B } -> E. x e. ( A (,) B ) ( ( RR _D F ) ` x ) = 0 ) ) |
| 28 | 1 | ad2antrr | |- ( ( ( ph /\ ( u e. ( A [,] B ) /\ v e. ( A [,] B ) ) ) /\ ( A. y e. ( A [,] B ) ( ( F ` y ) <_ ( F ` u ) /\ ( F ` v ) <_ ( F ` y ) ) /\ -. v e. { A , B } ) ) -> A e. RR ) |
| 29 | 2 | ad2antrr | |- ( ( ( ph /\ ( u e. ( A [,] B ) /\ v e. ( A [,] B ) ) ) /\ ( A. y e. ( A [,] B ) ( ( F ` y ) <_ ( F ` u ) /\ ( F ` v ) <_ ( F ` y ) ) /\ -. v e. { A , B } ) ) -> B e. RR ) |
| 30 | 3 | ad2antrr | |- ( ( ( ph /\ ( u e. ( A [,] B ) /\ v e. ( A [,] B ) ) ) /\ ( A. y e. ( A [,] B ) ( ( F ` y ) <_ ( F ` u ) /\ ( F ` v ) <_ ( F ` y ) ) /\ -. v e. { A , B } ) ) -> A < B ) |
| 31 | cncff | |- ( F e. ( ( A [,] B ) -cn-> RR ) -> F : ( A [,] B ) --> RR ) |
|
| 32 | 4 31 | syl | |- ( ph -> F : ( A [,] B ) --> RR ) |
| 33 | 32 | ffvelcdmda | |- ( ( ph /\ u e. ( A [,] B ) ) -> ( F ` u ) e. RR ) |
| 34 | 33 | renegcld | |- ( ( ph /\ u e. ( A [,] B ) ) -> -u ( F ` u ) e. RR ) |
| 35 | 34 | fmpttd | |- ( ph -> ( u e. ( A [,] B ) |-> -u ( F ` u ) ) : ( A [,] B ) --> RR ) |
| 36 | ax-resscn | |- RR C_ CC |
|
| 37 | ssid | |- CC C_ CC |
|
| 38 | cncfss | |- ( ( RR C_ CC /\ CC C_ CC ) -> ( ( A [,] B ) -cn-> RR ) C_ ( ( A [,] B ) -cn-> CC ) ) |
|
| 39 | 36 37 38 | mp2an | |- ( ( A [,] B ) -cn-> RR ) C_ ( ( A [,] B ) -cn-> CC ) |
| 40 | 39 4 | sselid | |- ( ph -> F e. ( ( A [,] B ) -cn-> CC ) ) |
| 41 | eqid | |- ( u e. ( A [,] B ) |-> -u ( F ` u ) ) = ( u e. ( A [,] B ) |-> -u ( F ` u ) ) |
|
| 42 | 41 | negfcncf | |- ( F e. ( ( A [,] B ) -cn-> CC ) -> ( u e. ( A [,] B ) |-> -u ( F ` u ) ) e. ( ( A [,] B ) -cn-> CC ) ) |
| 43 | 40 42 | syl | |- ( ph -> ( u e. ( A [,] B ) |-> -u ( F ` u ) ) e. ( ( A [,] B ) -cn-> CC ) ) |
| 44 | cncfcdm | |- ( ( RR C_ CC /\ ( u e. ( A [,] B ) |-> -u ( F ` u ) ) e. ( ( A [,] B ) -cn-> CC ) ) -> ( ( u e. ( A [,] B ) |-> -u ( F ` u ) ) e. ( ( A [,] B ) -cn-> RR ) <-> ( u e. ( A [,] B ) |-> -u ( F ` u ) ) : ( A [,] B ) --> RR ) ) |
|
| 45 | 36 43 44 | sylancr | |- ( ph -> ( ( u e. ( A [,] B ) |-> -u ( F ` u ) ) e. ( ( A [,] B ) -cn-> RR ) <-> ( u e. ( A [,] B ) |-> -u ( F ` u ) ) : ( A [,] B ) --> RR ) ) |
| 46 | 35 45 | mpbird | |- ( ph -> ( u e. ( A [,] B ) |-> -u ( F ` u ) ) e. ( ( A [,] B ) -cn-> RR ) ) |
| 47 | 46 | ad2antrr | |- ( ( ( ph /\ ( u e. ( A [,] B ) /\ v e. ( A [,] B ) ) ) /\ ( A. y e. ( A [,] B ) ( ( F ` y ) <_ ( F ` u ) /\ ( F ` v ) <_ ( F ` y ) ) /\ -. v e. { A , B } ) ) -> ( u e. ( A [,] B ) |-> -u ( F ` u ) ) e. ( ( A [,] B ) -cn-> RR ) ) |
| 48 | 36 | a1i | |- ( ph -> RR C_ CC ) |
| 49 | iccssre | |- ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ RR ) |
|
| 50 | 1 2 49 | syl2anc | |- ( ph -> ( A [,] B ) C_ RR ) |
| 51 | fss | |- ( ( F : ( A [,] B ) --> RR /\ RR C_ CC ) -> F : ( A [,] B ) --> CC ) |
|
| 52 | 32 36 51 | sylancl | |- ( ph -> F : ( A [,] B ) --> CC ) |
| 53 | 52 | ffvelcdmda | |- ( ( ph /\ u e. ( A [,] B ) ) -> ( F ` u ) e. CC ) |
| 54 | 53 | negcld | |- ( ( ph /\ u e. ( A [,] B ) ) -> -u ( F ` u ) e. CC ) |
| 55 | tgioo4 | |- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
|
| 56 | eqid | |- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
|
| 57 | iccntr | |- ( ( A e. RR /\ B e. RR ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) = ( A (,) B ) ) |
|
| 58 | 1 2 57 | syl2anc | |- ( ph -> ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) = ( A (,) B ) ) |
| 59 | 48 50 54 55 56 58 | dvmptntr | |- ( ph -> ( RR _D ( u e. ( A [,] B ) |-> -u ( F ` u ) ) ) = ( RR _D ( u e. ( A (,) B ) |-> -u ( F ` u ) ) ) ) |
| 60 | reelprrecn | |- RR e. { RR , CC } |
|
| 61 | 60 | a1i | |- ( ph -> RR e. { RR , CC } ) |
| 62 | ioossicc | |- ( A (,) B ) C_ ( A [,] B ) |
|
| 63 | 62 | sseli | |- ( u e. ( A (,) B ) -> u e. ( A [,] B ) ) |
| 64 | 63 53 | sylan2 | |- ( ( ph /\ u e. ( A (,) B ) ) -> ( F ` u ) e. CC ) |
| 65 | fvexd | |- ( ( ph /\ u e. ( A (,) B ) ) -> ( ( RR _D F ) ` u ) e. _V ) |
|
| 66 | 32 | feqmptd | |- ( ph -> F = ( u e. ( A [,] B ) |-> ( F ` u ) ) ) |
| 67 | 66 | oveq2d | |- ( ph -> ( RR _D F ) = ( RR _D ( u e. ( A [,] B ) |-> ( F ` u ) ) ) ) |
| 68 | dvf | |- ( RR _D F ) : dom ( RR _D F ) --> CC |
|
| 69 | 5 | feq2d | |- ( ph -> ( ( RR _D F ) : dom ( RR _D F ) --> CC <-> ( RR _D F ) : ( A (,) B ) --> CC ) ) |
| 70 | 68 69 | mpbii | |- ( ph -> ( RR _D F ) : ( A (,) B ) --> CC ) |
| 71 | 70 | feqmptd | |- ( ph -> ( RR _D F ) = ( u e. ( A (,) B ) |-> ( ( RR _D F ) ` u ) ) ) |
| 72 | 48 50 53 55 56 58 | dvmptntr | |- ( ph -> ( RR _D ( u e. ( A [,] B ) |-> ( F ` u ) ) ) = ( RR _D ( u e. ( A (,) B ) |-> ( F ` u ) ) ) ) |
| 73 | 67 71 72 | 3eqtr3rd | |- ( ph -> ( RR _D ( u e. ( A (,) B ) |-> ( F ` u ) ) ) = ( u e. ( A (,) B ) |-> ( ( RR _D F ) ` u ) ) ) |
| 74 | 61 64 65 73 | dvmptneg | |- ( ph -> ( RR _D ( u e. ( A (,) B ) |-> -u ( F ` u ) ) ) = ( u e. ( A (,) B ) |-> -u ( ( RR _D F ) ` u ) ) ) |
| 75 | 59 74 | eqtrd | |- ( ph -> ( RR _D ( u e. ( A [,] B ) |-> -u ( F ` u ) ) ) = ( u e. ( A (,) B ) |-> -u ( ( RR _D F ) ` u ) ) ) |
| 76 | 75 | dmeqd | |- ( ph -> dom ( RR _D ( u e. ( A [,] B ) |-> -u ( F ` u ) ) ) = dom ( u e. ( A (,) B ) |-> -u ( ( RR _D F ) ` u ) ) ) |
| 77 | dmmptg | |- ( A. u e. ( A (,) B ) -u ( ( RR _D F ) ` u ) e. _V -> dom ( u e. ( A (,) B ) |-> -u ( ( RR _D F ) ` u ) ) = ( A (,) B ) ) |
|
| 78 | negex | |- -u ( ( RR _D F ) ` u ) e. _V |
|
| 79 | 78 | a1i | |- ( u e. ( A (,) B ) -> -u ( ( RR _D F ) ` u ) e. _V ) |
| 80 | 77 79 | mprg | |- dom ( u e. ( A (,) B ) |-> -u ( ( RR _D F ) ` u ) ) = ( A (,) B ) |
| 81 | 76 80 | eqtrdi | |- ( ph -> dom ( RR _D ( u e. ( A [,] B ) |-> -u ( F ` u ) ) ) = ( A (,) B ) ) |
| 82 | 81 | ad2antrr | |- ( ( ( ph /\ ( u e. ( A [,] B ) /\ v e. ( A [,] B ) ) ) /\ ( A. y e. ( A [,] B ) ( ( F ` y ) <_ ( F ` u ) /\ ( F ` v ) <_ ( F ` y ) ) /\ -. v e. { A , B } ) ) -> dom ( RR _D ( u e. ( A [,] B ) |-> -u ( F ` u ) ) ) = ( A (,) B ) ) |
| 83 | simpr | |- ( ( ( F ` y ) <_ ( F ` u ) /\ ( F ` v ) <_ ( F ` y ) ) -> ( F ` v ) <_ ( F ` y ) ) |
|
| 84 | 32 | ad2antrr | |- ( ( ( ph /\ ( u e. ( A [,] B ) /\ v e. ( A [,] B ) ) ) /\ y e. ( A [,] B ) ) -> F : ( A [,] B ) --> RR ) |
| 85 | simplrr | |- ( ( ( ph /\ ( u e. ( A [,] B ) /\ v e. ( A [,] B ) ) ) /\ y e. ( A [,] B ) ) -> v e. ( A [,] B ) ) |
|
| 86 | 84 85 | ffvelcdmd | |- ( ( ( ph /\ ( u e. ( A [,] B ) /\ v e. ( A [,] B ) ) ) /\ y e. ( A [,] B ) ) -> ( F ` v ) e. RR ) |
| 87 | 32 | adantr | |- ( ( ph /\ ( u e. ( A [,] B ) /\ v e. ( A [,] B ) ) ) -> F : ( A [,] B ) --> RR ) |
| 88 | 87 | ffvelcdmda | |- ( ( ( ph /\ ( u e. ( A [,] B ) /\ v e. ( A [,] B ) ) ) /\ y e. ( A [,] B ) ) -> ( F ` y ) e. RR ) |
| 89 | 86 88 | lenegd | |- ( ( ( ph /\ ( u e. ( A [,] B ) /\ v e. ( A [,] B ) ) ) /\ y e. ( A [,] B ) ) -> ( ( F ` v ) <_ ( F ` y ) <-> -u ( F ` y ) <_ -u ( F ` v ) ) ) |
| 90 | fveq2 | |- ( u = y -> ( F ` u ) = ( F ` y ) ) |
|
| 91 | 90 | negeqd | |- ( u = y -> -u ( F ` u ) = -u ( F ` y ) ) |
| 92 | negex | |- -u ( F ` y ) e. _V |
|
| 93 | 91 41 92 | fvmpt | |- ( y e. ( A [,] B ) -> ( ( u e. ( A [,] B ) |-> -u ( F ` u ) ) ` y ) = -u ( F ` y ) ) |
| 94 | 93 | adantl | |- ( ( ( ph /\ ( u e. ( A [,] B ) /\ v e. ( A [,] B ) ) ) /\ y e. ( A [,] B ) ) -> ( ( u e. ( A [,] B ) |-> -u ( F ` u ) ) ` y ) = -u ( F ` y ) ) |
| 95 | fveq2 | |- ( u = v -> ( F ` u ) = ( F ` v ) ) |
|
| 96 | 95 | negeqd | |- ( u = v -> -u ( F ` u ) = -u ( F ` v ) ) |
| 97 | negex | |- -u ( F ` v ) e. _V |
|
| 98 | 96 41 97 | fvmpt | |- ( v e. ( A [,] B ) -> ( ( u e. ( A [,] B ) |-> -u ( F ` u ) ) ` v ) = -u ( F ` v ) ) |
| 99 | 85 98 | syl | |- ( ( ( ph /\ ( u e. ( A [,] B ) /\ v e. ( A [,] B ) ) ) /\ y e. ( A [,] B ) ) -> ( ( u e. ( A [,] B ) |-> -u ( F ` u ) ) ` v ) = -u ( F ` v ) ) |
| 100 | 94 99 | breq12d | |- ( ( ( ph /\ ( u e. ( A [,] B ) /\ v e. ( A [,] B ) ) ) /\ y e. ( A [,] B ) ) -> ( ( ( u e. ( A [,] B ) |-> -u ( F ` u ) ) ` y ) <_ ( ( u e. ( A [,] B ) |-> -u ( F ` u ) ) ` v ) <-> -u ( F ` y ) <_ -u ( F ` v ) ) ) |
| 101 | 89 100 | bitr4d | |- ( ( ( ph /\ ( u e. ( A [,] B ) /\ v e. ( A [,] B ) ) ) /\ y e. ( A [,] B ) ) -> ( ( F ` v ) <_ ( F ` y ) <-> ( ( u e. ( A [,] B ) |-> -u ( F ` u ) ) ` y ) <_ ( ( u e. ( A [,] B ) |-> -u ( F ` u ) ) ` v ) ) ) |
| 102 | 83 101 | imbitrid | |- ( ( ( ph /\ ( u e. ( A [,] B ) /\ v e. ( A [,] B ) ) ) /\ y e. ( A [,] B ) ) -> ( ( ( F ` y ) <_ ( F ` u ) /\ ( F ` v ) <_ ( F ` y ) ) -> ( ( u e. ( A [,] B ) |-> -u ( F ` u ) ) ` y ) <_ ( ( u e. ( A [,] B ) |-> -u ( F ` u ) ) ` v ) ) ) |
| 103 | 102 | ralimdva | |- ( ( ph /\ ( u e. ( A [,] B ) /\ v e. ( A [,] B ) ) ) -> ( A. y e. ( A [,] B ) ( ( F ` y ) <_ ( F ` u ) /\ ( F ` v ) <_ ( F ` y ) ) -> A. y e. ( A [,] B ) ( ( u e. ( A [,] B ) |-> -u ( F ` u ) ) ` y ) <_ ( ( u e. ( A [,] B ) |-> -u ( F ` u ) ) ` v ) ) ) |
| 104 | 103 | imp | |- ( ( ( ph /\ ( u e. ( A [,] B ) /\ v e. ( A [,] B ) ) ) /\ A. y e. ( A [,] B ) ( ( F ` y ) <_ ( F ` u ) /\ ( F ` v ) <_ ( F ` y ) ) ) -> A. y e. ( A [,] B ) ( ( u e. ( A [,] B ) |-> -u ( F ` u ) ) ` y ) <_ ( ( u e. ( A [,] B ) |-> -u ( F ` u ) ) ` v ) ) |
| 105 | fveq2 | |- ( y = t -> ( ( u e. ( A [,] B ) |-> -u ( F ` u ) ) ` y ) = ( ( u e. ( A [,] B ) |-> -u ( F ` u ) ) ` t ) ) |
|
| 106 | 105 | breq1d | |- ( y = t -> ( ( ( u e. ( A [,] B ) |-> -u ( F ` u ) ) ` y ) <_ ( ( u e. ( A [,] B ) |-> -u ( F ` u ) ) ` v ) <-> ( ( u e. ( A [,] B ) |-> -u ( F ` u ) ) ` t ) <_ ( ( u e. ( A [,] B ) |-> -u ( F ` u ) ) ` v ) ) ) |
| 107 | 106 | cbvralvw | |- ( A. y e. ( A [,] B ) ( ( u e. ( A [,] B ) |-> -u ( F ` u ) ) ` y ) <_ ( ( u e. ( A [,] B ) |-> -u ( F ` u ) ) ` v ) <-> A. t e. ( A [,] B ) ( ( u e. ( A [,] B ) |-> -u ( F ` u ) ) ` t ) <_ ( ( u e. ( A [,] B ) |-> -u ( F ` u ) ) ` v ) ) |
| 108 | 104 107 | sylib | |- ( ( ( ph /\ ( u e. ( A [,] B ) /\ v e. ( A [,] B ) ) ) /\ A. y e. ( A [,] B ) ( ( F ` y ) <_ ( F ` u ) /\ ( F ` v ) <_ ( F ` y ) ) ) -> A. t e. ( A [,] B ) ( ( u e. ( A [,] B ) |-> -u ( F ` u ) ) ` t ) <_ ( ( u e. ( A [,] B ) |-> -u ( F ` u ) ) ` v ) ) |
| 109 | 108 | adantrr | |- ( ( ( ph /\ ( u e. ( A [,] B ) /\ v e. ( A [,] B ) ) ) /\ ( A. y e. ( A [,] B ) ( ( F ` y ) <_ ( F ` u ) /\ ( F ` v ) <_ ( F ` y ) ) /\ -. v e. { A , B } ) ) -> A. t e. ( A [,] B ) ( ( u e. ( A [,] B ) |-> -u ( F ` u ) ) ` t ) <_ ( ( u e. ( A [,] B ) |-> -u ( F ` u ) ) ` v ) ) |
| 110 | simplrr | |- ( ( ( ph /\ ( u e. ( A [,] B ) /\ v e. ( A [,] B ) ) ) /\ ( A. y e. ( A [,] B ) ( ( F ` y ) <_ ( F ` u ) /\ ( F ` v ) <_ ( F ` y ) ) /\ -. v e. { A , B } ) ) -> v e. ( A [,] B ) ) |
|
| 111 | simprr | |- ( ( ( ph /\ ( u e. ( A [,] B ) /\ v e. ( A [,] B ) ) ) /\ ( A. y e. ( A [,] B ) ( ( F ` y ) <_ ( F ` u ) /\ ( F ` v ) <_ ( F ` y ) ) /\ -. v e. { A , B } ) ) -> -. v e. { A , B } ) |
|
| 112 | 28 29 30 47 82 109 110 111 | rollelem | |- ( ( ( ph /\ ( u e. ( A [,] B ) /\ v e. ( A [,] B ) ) ) /\ ( A. y e. ( A [,] B ) ( ( F ` y ) <_ ( F ` u ) /\ ( F ` v ) <_ ( F ` y ) ) /\ -. v e. { A , B } ) ) -> E. x e. ( A (,) B ) ( ( RR _D ( u e. ( A [,] B ) |-> -u ( F ` u ) ) ) ` x ) = 0 ) |
| 113 | 75 | fveq1d | |- ( ph -> ( ( RR _D ( u e. ( A [,] B ) |-> -u ( F ` u ) ) ) ` x ) = ( ( u e. ( A (,) B ) |-> -u ( ( RR _D F ) ` u ) ) ` x ) ) |
| 114 | fveq2 | |- ( u = x -> ( ( RR _D F ) ` u ) = ( ( RR _D F ) ` x ) ) |
|
| 115 | 114 | negeqd | |- ( u = x -> -u ( ( RR _D F ) ` u ) = -u ( ( RR _D F ) ` x ) ) |
| 116 | eqid | |- ( u e. ( A (,) B ) |-> -u ( ( RR _D F ) ` u ) ) = ( u e. ( A (,) B ) |-> -u ( ( RR _D F ) ` u ) ) |
|
| 117 | negex | |- -u ( ( RR _D F ) ` x ) e. _V |
|
| 118 | 115 116 117 | fvmpt | |- ( x e. ( A (,) B ) -> ( ( u e. ( A (,) B ) |-> -u ( ( RR _D F ) ` u ) ) ` x ) = -u ( ( RR _D F ) ` x ) ) |
| 119 | 113 118 | sylan9eq | |- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( RR _D ( u e. ( A [,] B ) |-> -u ( F ` u ) ) ) ` x ) = -u ( ( RR _D F ) ` x ) ) |
| 120 | 119 | eqeq1d | |- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( ( RR _D ( u e. ( A [,] B ) |-> -u ( F ` u ) ) ) ` x ) = 0 <-> -u ( ( RR _D F ) ` x ) = 0 ) ) |
| 121 | 5 | eleq2d | |- ( ph -> ( x e. dom ( RR _D F ) <-> x e. ( A (,) B ) ) ) |
| 122 | 121 | biimpar | |- ( ( ph /\ x e. ( A (,) B ) ) -> x e. dom ( RR _D F ) ) |
| 123 | 68 | ffvelcdmi | |- ( x e. dom ( RR _D F ) -> ( ( RR _D F ) ` x ) e. CC ) |
| 124 | 122 123 | syl | |- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( RR _D F ) ` x ) e. CC ) |
| 125 | 124 | negeq0d | |- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( ( RR _D F ) ` x ) = 0 <-> -u ( ( RR _D F ) ` x ) = 0 ) ) |
| 126 | 120 125 | bitr4d | |- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( ( RR _D ( u e. ( A [,] B ) |-> -u ( F ` u ) ) ) ` x ) = 0 <-> ( ( RR _D F ) ` x ) = 0 ) ) |
| 127 | 126 | rexbidva | |- ( ph -> ( E. x e. ( A (,) B ) ( ( RR _D ( u e. ( A [,] B ) |-> -u ( F ` u ) ) ) ` x ) = 0 <-> E. x e. ( A (,) B ) ( ( RR _D F ) ` x ) = 0 ) ) |
| 128 | 127 | ad2antrr | |- ( ( ( ph /\ ( u e. ( A [,] B ) /\ v e. ( A [,] B ) ) ) /\ ( A. y e. ( A [,] B ) ( ( F ` y ) <_ ( F ` u ) /\ ( F ` v ) <_ ( F ` y ) ) /\ -. v e. { A , B } ) ) -> ( E. x e. ( A (,) B ) ( ( RR _D ( u e. ( A [,] B ) |-> -u ( F ` u ) ) ) ` x ) = 0 <-> E. x e. ( A (,) B ) ( ( RR _D F ) ` x ) = 0 ) ) |
| 129 | 112 128 | mpbid | |- ( ( ( ph /\ ( u e. ( A [,] B ) /\ v e. ( A [,] B ) ) ) /\ ( A. y e. ( A [,] B ) ( ( F ` y ) <_ ( F ` u ) /\ ( F ` v ) <_ ( F ` y ) ) /\ -. v e. { A , B } ) ) -> E. x e. ( A (,) B ) ( ( RR _D F ) ` x ) = 0 ) |
| 130 | 129 | expr | |- ( ( ( ph /\ ( u e. ( A [,] B ) /\ v e. ( A [,] B ) ) ) /\ A. y e. ( A [,] B ) ( ( F ` y ) <_ ( F ` u ) /\ ( F ` v ) <_ ( F ` y ) ) ) -> ( -. v e. { A , B } -> E. x e. ( A (,) B ) ( ( RR _D F ) ` x ) = 0 ) ) |
| 131 | vex | |- u e. _V |
|
| 132 | 131 | elpr | |- ( u e. { A , B } <-> ( u = A \/ u = B ) ) |
| 133 | fveq2 | |- ( u = A -> ( F ` u ) = ( F ` A ) ) |
|
| 134 | 133 | a1i | |- ( ph -> ( u = A -> ( F ` u ) = ( F ` A ) ) ) |
| 135 | 6 | eqcomd | |- ( ph -> ( F ` B ) = ( F ` A ) ) |
| 136 | fveqeq2 | |- ( u = B -> ( ( F ` u ) = ( F ` A ) <-> ( F ` B ) = ( F ` A ) ) ) |
|
| 137 | 135 136 | syl5ibrcom | |- ( ph -> ( u = B -> ( F ` u ) = ( F ` A ) ) ) |
| 138 | 134 137 | jaod | |- ( ph -> ( ( u = A \/ u = B ) -> ( F ` u ) = ( F ` A ) ) ) |
| 139 | 132 138 | biimtrid | |- ( ph -> ( u e. { A , B } -> ( F ` u ) = ( F ` A ) ) ) |
| 140 | eleq1w | |- ( u = v -> ( u e. { A , B } <-> v e. { A , B } ) ) |
|
| 141 | fveqeq2 | |- ( u = v -> ( ( F ` u ) = ( F ` A ) <-> ( F ` v ) = ( F ` A ) ) ) |
|
| 142 | 140 141 | imbi12d | |- ( u = v -> ( ( u e. { A , B } -> ( F ` u ) = ( F ` A ) ) <-> ( v e. { A , B } -> ( F ` v ) = ( F ` A ) ) ) ) |
| 143 | 142 | imbi2d | |- ( u = v -> ( ( ph -> ( u e. { A , B } -> ( F ` u ) = ( F ` A ) ) ) <-> ( ph -> ( v e. { A , B } -> ( F ` v ) = ( F ` A ) ) ) ) ) |
| 144 | 143 139 | chvarvv | |- ( ph -> ( v e. { A , B } -> ( F ` v ) = ( F ` A ) ) ) |
| 145 | 139 144 | anim12d | |- ( ph -> ( ( u e. { A , B } /\ v e. { A , B } ) -> ( ( F ` u ) = ( F ` A ) /\ ( F ` v ) = ( F ` A ) ) ) ) |
| 146 | 145 | ad2antrr | |- ( ( ( ph /\ ( u e. ( A [,] B ) /\ v e. ( A [,] B ) ) ) /\ A. y e. ( A [,] B ) ( ( F ` y ) <_ ( F ` u ) /\ ( F ` v ) <_ ( F ` y ) ) ) -> ( ( u e. { A , B } /\ v e. { A , B } ) -> ( ( F ` u ) = ( F ` A ) /\ ( F ` v ) = ( F ` A ) ) ) ) |
| 147 | 1 | rexrd | |- ( ph -> A e. RR* ) |
| 148 | 2 | rexrd | |- ( ph -> B e. RR* ) |
| 149 | lbicc2 | |- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> A e. ( A [,] B ) ) |
|
| 150 | 147 148 7 149 | syl3anc | |- ( ph -> A e. ( A [,] B ) ) |
| 151 | 32 150 | ffvelcdmd | |- ( ph -> ( F ` A ) e. RR ) |
| 152 | 151 | ad2antrr | |- ( ( ( ph /\ ( u e. ( A [,] B ) /\ v e. ( A [,] B ) ) ) /\ y e. ( A [,] B ) ) -> ( F ` A ) e. RR ) |
| 153 | 88 152 | letri3d | |- ( ( ( ph /\ ( u e. ( A [,] B ) /\ v e. ( A [,] B ) ) ) /\ y e. ( A [,] B ) ) -> ( ( F ` y ) = ( F ` A ) <-> ( ( F ` y ) <_ ( F ` A ) /\ ( F ` A ) <_ ( F ` y ) ) ) ) |
| 154 | breq2 | |- ( ( F ` u ) = ( F ` A ) -> ( ( F ` y ) <_ ( F ` u ) <-> ( F ` y ) <_ ( F ` A ) ) ) |
|
| 155 | breq1 | |- ( ( F ` v ) = ( F ` A ) -> ( ( F ` v ) <_ ( F ` y ) <-> ( F ` A ) <_ ( F ` y ) ) ) |
|
| 156 | 154 155 | bi2anan9 | |- ( ( ( F ` u ) = ( F ` A ) /\ ( F ` v ) = ( F ` A ) ) -> ( ( ( F ` y ) <_ ( F ` u ) /\ ( F ` v ) <_ ( F ` y ) ) <-> ( ( F ` y ) <_ ( F ` A ) /\ ( F ` A ) <_ ( F ` y ) ) ) ) |
| 157 | 156 | bibi2d | |- ( ( ( F ` u ) = ( F ` A ) /\ ( F ` v ) = ( F ` A ) ) -> ( ( ( F ` y ) = ( F ` A ) <-> ( ( F ` y ) <_ ( F ` u ) /\ ( F ` v ) <_ ( F ` y ) ) ) <-> ( ( F ` y ) = ( F ` A ) <-> ( ( F ` y ) <_ ( F ` A ) /\ ( F ` A ) <_ ( F ` y ) ) ) ) ) |
| 158 | 153 157 | syl5ibrcom | |- ( ( ( ph /\ ( u e. ( A [,] B ) /\ v e. ( A [,] B ) ) ) /\ y e. ( A [,] B ) ) -> ( ( ( F ` u ) = ( F ` A ) /\ ( F ` v ) = ( F ` A ) ) -> ( ( F ` y ) = ( F ` A ) <-> ( ( F ` y ) <_ ( F ` u ) /\ ( F ` v ) <_ ( F ` y ) ) ) ) ) |
| 159 | 158 | impancom | |- ( ( ( ph /\ ( u e. ( A [,] B ) /\ v e. ( A [,] B ) ) ) /\ ( ( F ` u ) = ( F ` A ) /\ ( F ` v ) = ( F ` A ) ) ) -> ( y e. ( A [,] B ) -> ( ( F ` y ) = ( F ` A ) <-> ( ( F ` y ) <_ ( F ` u ) /\ ( F ` v ) <_ ( F ` y ) ) ) ) ) |
| 160 | 159 | imp | |- ( ( ( ( ph /\ ( u e. ( A [,] B ) /\ v e. ( A [,] B ) ) ) /\ ( ( F ` u ) = ( F ` A ) /\ ( F ` v ) = ( F ` A ) ) ) /\ y e. ( A [,] B ) ) -> ( ( F ` y ) = ( F ` A ) <-> ( ( F ` y ) <_ ( F ` u ) /\ ( F ` v ) <_ ( F ` y ) ) ) ) |
| 161 | 160 | ralbidva | |- ( ( ( ph /\ ( u e. ( A [,] B ) /\ v e. ( A [,] B ) ) ) /\ ( ( F ` u ) = ( F ` A ) /\ ( F ` v ) = ( F ` A ) ) ) -> ( A. y e. ( A [,] B ) ( F ` y ) = ( F ` A ) <-> A. y e. ( A [,] B ) ( ( F ` y ) <_ ( F ` u ) /\ ( F ` v ) <_ ( F ` y ) ) ) ) |
| 162 | 32 | ffnd | |- ( ph -> F Fn ( A [,] B ) ) |
| 163 | fnconstg | |- ( ( F ` A ) e. RR -> ( ( A [,] B ) X. { ( F ` A ) } ) Fn ( A [,] B ) ) |
|
| 164 | 151 163 | syl | |- ( ph -> ( ( A [,] B ) X. { ( F ` A ) } ) Fn ( A [,] B ) ) |
| 165 | eqfnfv | |- ( ( F Fn ( A [,] B ) /\ ( ( A [,] B ) X. { ( F ` A ) } ) Fn ( A [,] B ) ) -> ( F = ( ( A [,] B ) X. { ( F ` A ) } ) <-> A. y e. ( A [,] B ) ( F ` y ) = ( ( ( A [,] B ) X. { ( F ` A ) } ) ` y ) ) ) |
|
| 166 | 162 164 165 | syl2anc | |- ( ph -> ( F = ( ( A [,] B ) X. { ( F ` A ) } ) <-> A. y e. ( A [,] B ) ( F ` y ) = ( ( ( A [,] B ) X. { ( F ` A ) } ) ` y ) ) ) |
| 167 | fvex | |- ( F ` A ) e. _V |
|
| 168 | 167 | fvconst2 | |- ( y e. ( A [,] B ) -> ( ( ( A [,] B ) X. { ( F ` A ) } ) ` y ) = ( F ` A ) ) |
| 169 | 168 | eqeq2d | |- ( y e. ( A [,] B ) -> ( ( F ` y ) = ( ( ( A [,] B ) X. { ( F ` A ) } ) ` y ) <-> ( F ` y ) = ( F ` A ) ) ) |
| 170 | 169 | ralbiia | |- ( A. y e. ( A [,] B ) ( F ` y ) = ( ( ( A [,] B ) X. { ( F ` A ) } ) ` y ) <-> A. y e. ( A [,] B ) ( F ` y ) = ( F ` A ) ) |
| 171 | 166 170 | bitrdi | |- ( ph -> ( F = ( ( A [,] B ) X. { ( F ` A ) } ) <-> A. y e. ( A [,] B ) ( F ` y ) = ( F ` A ) ) ) |
| 172 | ioon0 | |- ( ( A e. RR* /\ B e. RR* ) -> ( ( A (,) B ) =/= (/) <-> A < B ) ) |
|
| 173 | 147 148 172 | syl2anc | |- ( ph -> ( ( A (,) B ) =/= (/) <-> A < B ) ) |
| 174 | 3 173 | mpbird | |- ( ph -> ( A (,) B ) =/= (/) ) |
| 175 | fconstmpt | |- ( ( A [,] B ) X. { ( F ` A ) } ) = ( u e. ( A [,] B ) |-> ( F ` A ) ) |
|
| 176 | 175 | eqeq2i | |- ( F = ( ( A [,] B ) X. { ( F ` A ) } ) <-> F = ( u e. ( A [,] B ) |-> ( F ` A ) ) ) |
| 177 | 176 | biimpi | |- ( F = ( ( A [,] B ) X. { ( F ` A ) } ) -> F = ( u e. ( A [,] B ) |-> ( F ` A ) ) ) |
| 178 | 177 | oveq2d | |- ( F = ( ( A [,] B ) X. { ( F ` A ) } ) -> ( RR _D F ) = ( RR _D ( u e. ( A [,] B ) |-> ( F ` A ) ) ) ) |
| 179 | 151 | recnd | |- ( ph -> ( F ` A ) e. CC ) |
| 180 | 179 | adantr | |- ( ( ph /\ u e. RR ) -> ( F ` A ) e. CC ) |
| 181 | 0cnd | |- ( ( ph /\ u e. RR ) -> 0 e. CC ) |
|
| 182 | 61 179 | dvmptc | |- ( ph -> ( RR _D ( u e. RR |-> ( F ` A ) ) ) = ( u e. RR |-> 0 ) ) |
| 183 | 61 180 181 182 50 55 56 58 | dvmptres2 | |- ( ph -> ( RR _D ( u e. ( A [,] B ) |-> ( F ` A ) ) ) = ( u e. ( A (,) B ) |-> 0 ) ) |
| 184 | 178 183 | sylan9eqr | |- ( ( ph /\ F = ( ( A [,] B ) X. { ( F ` A ) } ) ) -> ( RR _D F ) = ( u e. ( A (,) B ) |-> 0 ) ) |
| 185 | 184 | fveq1d | |- ( ( ph /\ F = ( ( A [,] B ) X. { ( F ` A ) } ) ) -> ( ( RR _D F ) ` x ) = ( ( u e. ( A (,) B ) |-> 0 ) ` x ) ) |
| 186 | eqidd | |- ( u = x -> 0 = 0 ) |
|
| 187 | eqid | |- ( u e. ( A (,) B ) |-> 0 ) = ( u e. ( A (,) B ) |-> 0 ) |
|
| 188 | c0ex | |- 0 e. _V |
|
| 189 | 186 187 188 | fvmpt | |- ( x e. ( A (,) B ) -> ( ( u e. ( A (,) B ) |-> 0 ) ` x ) = 0 ) |
| 190 | 185 189 | sylan9eq | |- ( ( ( ph /\ F = ( ( A [,] B ) X. { ( F ` A ) } ) ) /\ x e. ( A (,) B ) ) -> ( ( RR _D F ) ` x ) = 0 ) |
| 191 | 190 | ralrimiva | |- ( ( ph /\ F = ( ( A [,] B ) X. { ( F ` A ) } ) ) -> A. x e. ( A (,) B ) ( ( RR _D F ) ` x ) = 0 ) |
| 192 | r19.2z | |- ( ( ( A (,) B ) =/= (/) /\ A. x e. ( A (,) B ) ( ( RR _D F ) ` x ) = 0 ) -> E. x e. ( A (,) B ) ( ( RR _D F ) ` x ) = 0 ) |
|
| 193 | 174 191 192 | syl2an2r | |- ( ( ph /\ F = ( ( A [,] B ) X. { ( F ` A ) } ) ) -> E. x e. ( A (,) B ) ( ( RR _D F ) ` x ) = 0 ) |
| 194 | 193 | ex | |- ( ph -> ( F = ( ( A [,] B ) X. { ( F ` A ) } ) -> E. x e. ( A (,) B ) ( ( RR _D F ) ` x ) = 0 ) ) |
| 195 | 171 194 | sylbird | |- ( ph -> ( A. y e. ( A [,] B ) ( F ` y ) = ( F ` A ) -> E. x e. ( A (,) B ) ( ( RR _D F ) ` x ) = 0 ) ) |
| 196 | 195 | ad2antrr | |- ( ( ( ph /\ ( u e. ( A [,] B ) /\ v e. ( A [,] B ) ) ) /\ ( ( F ` u ) = ( F ` A ) /\ ( F ` v ) = ( F ` A ) ) ) -> ( A. y e. ( A [,] B ) ( F ` y ) = ( F ` A ) -> E. x e. ( A (,) B ) ( ( RR _D F ) ` x ) = 0 ) ) |
| 197 | 161 196 | sylbird | |- ( ( ( ph /\ ( u e. ( A [,] B ) /\ v e. ( A [,] B ) ) ) /\ ( ( F ` u ) = ( F ` A ) /\ ( F ` v ) = ( F ` A ) ) ) -> ( A. y e. ( A [,] B ) ( ( F ` y ) <_ ( F ` u ) /\ ( F ` v ) <_ ( F ` y ) ) -> E. x e. ( A (,) B ) ( ( RR _D F ) ` x ) = 0 ) ) |
| 198 | 197 | impancom | |- ( ( ( ph /\ ( u e. ( A [,] B ) /\ v e. ( A [,] B ) ) ) /\ A. y e. ( A [,] B ) ( ( F ` y ) <_ ( F ` u ) /\ ( F ` v ) <_ ( F ` y ) ) ) -> ( ( ( F ` u ) = ( F ` A ) /\ ( F ` v ) = ( F ` A ) ) -> E. x e. ( A (,) B ) ( ( RR _D F ) ` x ) = 0 ) ) |
| 199 | 146 198 | syld | |- ( ( ( ph /\ ( u e. ( A [,] B ) /\ v e. ( A [,] B ) ) ) /\ A. y e. ( A [,] B ) ( ( F ` y ) <_ ( F ` u ) /\ ( F ` v ) <_ ( F ` y ) ) ) -> ( ( u e. { A , B } /\ v e. { A , B } ) -> E. x e. ( A (,) B ) ( ( RR _D F ) ` x ) = 0 ) ) |
| 200 | 27 130 199 | ecased | |- ( ( ( ph /\ ( u e. ( A [,] B ) /\ v e. ( A [,] B ) ) ) /\ A. y e. ( A [,] B ) ( ( F ` y ) <_ ( F ` u ) /\ ( F ` v ) <_ ( F ` y ) ) ) -> E. x e. ( A (,) B ) ( ( RR _D F ) ` x ) = 0 ) |
| 201 | 200 | ex | |- ( ( ph /\ ( u e. ( A [,] B ) /\ v e. ( A [,] B ) ) ) -> ( A. y e. ( A [,] B ) ( ( F ` y ) <_ ( F ` u ) /\ ( F ` v ) <_ ( F ` y ) ) -> E. x e. ( A (,) B ) ( ( RR _D F ) ` x ) = 0 ) ) |
| 202 | 11 201 | biimtrrid | |- ( ( ph /\ ( u e. ( A [,] B ) /\ v e. ( A [,] B ) ) ) -> ( ( A. y e. ( A [,] B ) ( F ` y ) <_ ( F ` u ) /\ A. y e. ( A [,] B ) ( F ` v ) <_ ( F ` y ) ) -> E. x e. ( A (,) B ) ( ( RR _D F ) ` x ) = 0 ) ) |
| 203 | 202 | rexlimdvva | |- ( ph -> ( E. u e. ( A [,] B ) E. v e. ( A [,] B ) ( A. y e. ( A [,] B ) ( F ` y ) <_ ( F ` u ) /\ A. y e. ( A [,] B ) ( F ` v ) <_ ( F ` y ) ) -> E. x e. ( A (,) B ) ( ( RR _D F ) ` x ) = 0 ) ) |
| 204 | 10 203 | mpd | |- ( ph -> E. x e. ( A (,) B ) ( ( RR _D F ) ` x ) = 0 ) |