This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The subspace of a topological product space induced by a subset with a Cartesian product representation is a topological product of the subspaces induced by the subspaces of the terms of the products. (Contributed by Jeff Madsen, 2-Sep-2009) (Proof shortened by Mario Carneiro, 2-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | txrest | |- ( ( ( R e. V /\ S e. W ) /\ ( A e. X /\ B e. Y ) ) -> ( ( R tX S ) |`t ( A X. B ) ) = ( ( R |`t A ) tX ( S |`t B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ran ( r e. R , s e. S |-> ( r X. s ) ) = ran ( r e. R , s e. S |-> ( r X. s ) ) |
|
| 2 | 1 | txval | |- ( ( R e. V /\ S e. W ) -> ( R tX S ) = ( topGen ` ran ( r e. R , s e. S |-> ( r X. s ) ) ) ) |
| 3 | 2 | adantr | |- ( ( ( R e. V /\ S e. W ) /\ ( A e. X /\ B e. Y ) ) -> ( R tX S ) = ( topGen ` ran ( r e. R , s e. S |-> ( r X. s ) ) ) ) |
| 4 | 3 | oveq1d | |- ( ( ( R e. V /\ S e. W ) /\ ( A e. X /\ B e. Y ) ) -> ( ( R tX S ) |`t ( A X. B ) ) = ( ( topGen ` ran ( r e. R , s e. S |-> ( r X. s ) ) ) |`t ( A X. B ) ) ) |
| 5 | 1 | txbasex | |- ( ( R e. V /\ S e. W ) -> ran ( r e. R , s e. S |-> ( r X. s ) ) e. _V ) |
| 6 | xpexg | |- ( ( A e. X /\ B e. Y ) -> ( A X. B ) e. _V ) |
|
| 7 | tgrest | |- ( ( ran ( r e. R , s e. S |-> ( r X. s ) ) e. _V /\ ( A X. B ) e. _V ) -> ( topGen ` ( ran ( r e. R , s e. S |-> ( r X. s ) ) |`t ( A X. B ) ) ) = ( ( topGen ` ran ( r e. R , s e. S |-> ( r X. s ) ) ) |`t ( A X. B ) ) ) |
|
| 8 | 5 6 7 | syl2an | |- ( ( ( R e. V /\ S e. W ) /\ ( A e. X /\ B e. Y ) ) -> ( topGen ` ( ran ( r e. R , s e. S |-> ( r X. s ) ) |`t ( A X. B ) ) ) = ( ( topGen ` ran ( r e. R , s e. S |-> ( r X. s ) ) ) |`t ( A X. B ) ) ) |
| 9 | elrest | |- ( ( ran ( r e. R , s e. S |-> ( r X. s ) ) e. _V /\ ( A X. B ) e. _V ) -> ( x e. ( ran ( r e. R , s e. S |-> ( r X. s ) ) |`t ( A X. B ) ) <-> E. w e. ran ( r e. R , s e. S |-> ( r X. s ) ) x = ( w i^i ( A X. B ) ) ) ) |
|
| 10 | 5 6 9 | syl2an | |- ( ( ( R e. V /\ S e. W ) /\ ( A e. X /\ B e. Y ) ) -> ( x e. ( ran ( r e. R , s e. S |-> ( r X. s ) ) |`t ( A X. B ) ) <-> E. w e. ran ( r e. R , s e. S |-> ( r X. s ) ) x = ( w i^i ( A X. B ) ) ) ) |
| 11 | vex | |- r e. _V |
|
| 12 | 11 | inex1 | |- ( r i^i A ) e. _V |
| 13 | 12 | a1i | |- ( ( ( ( R e. V /\ S e. W ) /\ ( A e. X /\ B e. Y ) ) /\ r e. R ) -> ( r i^i A ) e. _V ) |
| 14 | elrest | |- ( ( R e. V /\ A e. X ) -> ( u e. ( R |`t A ) <-> E. r e. R u = ( r i^i A ) ) ) |
|
| 15 | 14 | ad2ant2r | |- ( ( ( R e. V /\ S e. W ) /\ ( A e. X /\ B e. Y ) ) -> ( u e. ( R |`t A ) <-> E. r e. R u = ( r i^i A ) ) ) |
| 16 | xpeq1 | |- ( u = ( r i^i A ) -> ( u X. v ) = ( ( r i^i A ) X. v ) ) |
|
| 17 | 16 | eqeq2d | |- ( u = ( r i^i A ) -> ( x = ( u X. v ) <-> x = ( ( r i^i A ) X. v ) ) ) |
| 18 | 17 | rexbidv | |- ( u = ( r i^i A ) -> ( E. v e. ( S |`t B ) x = ( u X. v ) <-> E. v e. ( S |`t B ) x = ( ( r i^i A ) X. v ) ) ) |
| 19 | vex | |- s e. _V |
|
| 20 | 19 | inex1 | |- ( s i^i B ) e. _V |
| 21 | 20 | a1i | |- ( ( ( ( R e. V /\ S e. W ) /\ ( A e. X /\ B e. Y ) ) /\ s e. S ) -> ( s i^i B ) e. _V ) |
| 22 | elrest | |- ( ( S e. W /\ B e. Y ) -> ( v e. ( S |`t B ) <-> E. s e. S v = ( s i^i B ) ) ) |
|
| 23 | 22 | ad2ant2l | |- ( ( ( R e. V /\ S e. W ) /\ ( A e. X /\ B e. Y ) ) -> ( v e. ( S |`t B ) <-> E. s e. S v = ( s i^i B ) ) ) |
| 24 | xpeq2 | |- ( v = ( s i^i B ) -> ( ( r i^i A ) X. v ) = ( ( r i^i A ) X. ( s i^i B ) ) ) |
|
| 25 | 24 | eqeq2d | |- ( v = ( s i^i B ) -> ( x = ( ( r i^i A ) X. v ) <-> x = ( ( r i^i A ) X. ( s i^i B ) ) ) ) |
| 26 | 25 | adantl | |- ( ( ( ( R e. V /\ S e. W ) /\ ( A e. X /\ B e. Y ) ) /\ v = ( s i^i B ) ) -> ( x = ( ( r i^i A ) X. v ) <-> x = ( ( r i^i A ) X. ( s i^i B ) ) ) ) |
| 27 | 21 23 26 | rexxfr2d | |- ( ( ( R e. V /\ S e. W ) /\ ( A e. X /\ B e. Y ) ) -> ( E. v e. ( S |`t B ) x = ( ( r i^i A ) X. v ) <-> E. s e. S x = ( ( r i^i A ) X. ( s i^i B ) ) ) ) |
| 28 | 18 27 | sylan9bbr | |- ( ( ( ( R e. V /\ S e. W ) /\ ( A e. X /\ B e. Y ) ) /\ u = ( r i^i A ) ) -> ( E. v e. ( S |`t B ) x = ( u X. v ) <-> E. s e. S x = ( ( r i^i A ) X. ( s i^i B ) ) ) ) |
| 29 | 13 15 28 | rexxfr2d | |- ( ( ( R e. V /\ S e. W ) /\ ( A e. X /\ B e. Y ) ) -> ( E. u e. ( R |`t A ) E. v e. ( S |`t B ) x = ( u X. v ) <-> E. r e. R E. s e. S x = ( ( r i^i A ) X. ( s i^i B ) ) ) ) |
| 30 | 11 19 | xpex | |- ( r X. s ) e. _V |
| 31 | 30 | rgen2w | |- A. r e. R A. s e. S ( r X. s ) e. _V |
| 32 | eqid | |- ( r e. R , s e. S |-> ( r X. s ) ) = ( r e. R , s e. S |-> ( r X. s ) ) |
|
| 33 | ineq1 | |- ( w = ( r X. s ) -> ( w i^i ( A X. B ) ) = ( ( r X. s ) i^i ( A X. B ) ) ) |
|
| 34 | inxp | |- ( ( r X. s ) i^i ( A X. B ) ) = ( ( r i^i A ) X. ( s i^i B ) ) |
|
| 35 | 33 34 | eqtrdi | |- ( w = ( r X. s ) -> ( w i^i ( A X. B ) ) = ( ( r i^i A ) X. ( s i^i B ) ) ) |
| 36 | 35 | eqeq2d | |- ( w = ( r X. s ) -> ( x = ( w i^i ( A X. B ) ) <-> x = ( ( r i^i A ) X. ( s i^i B ) ) ) ) |
| 37 | 32 36 | rexrnmpo | |- ( A. r e. R A. s e. S ( r X. s ) e. _V -> ( E. w e. ran ( r e. R , s e. S |-> ( r X. s ) ) x = ( w i^i ( A X. B ) ) <-> E. r e. R E. s e. S x = ( ( r i^i A ) X. ( s i^i B ) ) ) ) |
| 38 | 31 37 | ax-mp | |- ( E. w e. ran ( r e. R , s e. S |-> ( r X. s ) ) x = ( w i^i ( A X. B ) ) <-> E. r e. R E. s e. S x = ( ( r i^i A ) X. ( s i^i B ) ) ) |
| 39 | 29 38 | bitr4di | |- ( ( ( R e. V /\ S e. W ) /\ ( A e. X /\ B e. Y ) ) -> ( E. u e. ( R |`t A ) E. v e. ( S |`t B ) x = ( u X. v ) <-> E. w e. ran ( r e. R , s e. S |-> ( r X. s ) ) x = ( w i^i ( A X. B ) ) ) ) |
| 40 | 10 39 | bitr4d | |- ( ( ( R e. V /\ S e. W ) /\ ( A e. X /\ B e. Y ) ) -> ( x e. ( ran ( r e. R , s e. S |-> ( r X. s ) ) |`t ( A X. B ) ) <-> E. u e. ( R |`t A ) E. v e. ( S |`t B ) x = ( u X. v ) ) ) |
| 41 | 40 | eqabdv | |- ( ( ( R e. V /\ S e. W ) /\ ( A e. X /\ B e. Y ) ) -> ( ran ( r e. R , s e. S |-> ( r X. s ) ) |`t ( A X. B ) ) = { x | E. u e. ( R |`t A ) E. v e. ( S |`t B ) x = ( u X. v ) } ) |
| 42 | eqid | |- ( u e. ( R |`t A ) , v e. ( S |`t B ) |-> ( u X. v ) ) = ( u e. ( R |`t A ) , v e. ( S |`t B ) |-> ( u X. v ) ) |
|
| 43 | 42 | rnmpo | |- ran ( u e. ( R |`t A ) , v e. ( S |`t B ) |-> ( u X. v ) ) = { x | E. u e. ( R |`t A ) E. v e. ( S |`t B ) x = ( u X. v ) } |
| 44 | 41 43 | eqtr4di | |- ( ( ( R e. V /\ S e. W ) /\ ( A e. X /\ B e. Y ) ) -> ( ran ( r e. R , s e. S |-> ( r X. s ) ) |`t ( A X. B ) ) = ran ( u e. ( R |`t A ) , v e. ( S |`t B ) |-> ( u X. v ) ) ) |
| 45 | 44 | fveq2d | |- ( ( ( R e. V /\ S e. W ) /\ ( A e. X /\ B e. Y ) ) -> ( topGen ` ( ran ( r e. R , s e. S |-> ( r X. s ) ) |`t ( A X. B ) ) ) = ( topGen ` ran ( u e. ( R |`t A ) , v e. ( S |`t B ) |-> ( u X. v ) ) ) ) |
| 46 | 4 8 45 | 3eqtr2d | |- ( ( ( R e. V /\ S e. W ) /\ ( A e. X /\ B e. Y ) ) -> ( ( R tX S ) |`t ( A X. B ) ) = ( topGen ` ran ( u e. ( R |`t A ) , v e. ( S |`t B ) |-> ( u X. v ) ) ) ) |
| 47 | ovex | |- ( R |`t A ) e. _V |
|
| 48 | ovex | |- ( S |`t B ) e. _V |
|
| 49 | eqid | |- ran ( u e. ( R |`t A ) , v e. ( S |`t B ) |-> ( u X. v ) ) = ran ( u e. ( R |`t A ) , v e. ( S |`t B ) |-> ( u X. v ) ) |
|
| 50 | 49 | txval | |- ( ( ( R |`t A ) e. _V /\ ( S |`t B ) e. _V ) -> ( ( R |`t A ) tX ( S |`t B ) ) = ( topGen ` ran ( u e. ( R |`t A ) , v e. ( S |`t B ) |-> ( u X. v ) ) ) ) |
| 51 | 47 48 50 | mp2an | |- ( ( R |`t A ) tX ( S |`t B ) ) = ( topGen ` ran ( u e. ( R |`t A ) , v e. ( S |`t B ) |-> ( u X. v ) ) ) |
| 52 | 46 51 | eqtr4di | |- ( ( ( R e. V /\ S e. W ) /\ ( A e. X /\ B e. Y ) ) -> ( ( R tX S ) |`t ( A X. B ) ) = ( ( R |`t A ) tX ( S |`t B ) ) ) |