This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cauchy's Mean Value Theorem. If F , G are real continuous functions on [ A , B ] differentiable on ( A , B ) , then there is some x e. ( A , B ) such that F ' ( x ) / G ' ( x ) = ( F ( A ) - F ( B ) ) / ( G ( A ) - G ( B ) ) . (We express the condition without division, so that we need no nonzero constraints.) (Contributed by Mario Carneiro, 29-Dec-2016) Avoid ax-mulf . (Revised by GG, 16-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cmvth.a | |- ( ph -> A e. RR ) |
|
| cmvth.b | |- ( ph -> B e. RR ) |
||
| cmvth.lt | |- ( ph -> A < B ) |
||
| cmvth.f | |- ( ph -> F e. ( ( A [,] B ) -cn-> RR ) ) |
||
| cmvth.g | |- ( ph -> G e. ( ( A [,] B ) -cn-> RR ) ) |
||
| cmvth.df | |- ( ph -> dom ( RR _D F ) = ( A (,) B ) ) |
||
| cmvth.dg | |- ( ph -> dom ( RR _D G ) = ( A (,) B ) ) |
||
| Assertion | cmvth | |- ( ph -> E. x e. ( A (,) B ) ( ( ( F ` B ) - ( F ` A ) ) x. ( ( RR _D G ) ` x ) ) = ( ( ( G ` B ) - ( G ` A ) ) x. ( ( RR _D F ) ` x ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cmvth.a | |- ( ph -> A e. RR ) |
|
| 2 | cmvth.b | |- ( ph -> B e. RR ) |
|
| 3 | cmvth.lt | |- ( ph -> A < B ) |
|
| 4 | cmvth.f | |- ( ph -> F e. ( ( A [,] B ) -cn-> RR ) ) |
|
| 5 | cmvth.g | |- ( ph -> G e. ( ( A [,] B ) -cn-> RR ) ) |
|
| 6 | cmvth.df | |- ( ph -> dom ( RR _D F ) = ( A (,) B ) ) |
|
| 7 | cmvth.dg | |- ( ph -> dom ( RR _D G ) = ( A (,) B ) ) |
|
| 8 | eqid | |- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
|
| 9 | 8 | subcn | |- - e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) |
| 10 | cncff | |- ( F e. ( ( A [,] B ) -cn-> RR ) -> F : ( A [,] B ) --> RR ) |
|
| 11 | 4 10 | syl | |- ( ph -> F : ( A [,] B ) --> RR ) |
| 12 | 1 | rexrd | |- ( ph -> A e. RR* ) |
| 13 | 2 | rexrd | |- ( ph -> B e. RR* ) |
| 14 | 1 2 3 | ltled | |- ( ph -> A <_ B ) |
| 15 | ubicc2 | |- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> B e. ( A [,] B ) ) |
|
| 16 | 12 13 14 15 | syl3anc | |- ( ph -> B e. ( A [,] B ) ) |
| 17 | 11 16 | ffvelcdmd | |- ( ph -> ( F ` B ) e. RR ) |
| 18 | lbicc2 | |- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> A e. ( A [,] B ) ) |
|
| 19 | 12 13 14 18 | syl3anc | |- ( ph -> A e. ( A [,] B ) ) |
| 20 | 11 19 | ffvelcdmd | |- ( ph -> ( F ` A ) e. RR ) |
| 21 | 17 20 | resubcld | |- ( ph -> ( ( F ` B ) - ( F ` A ) ) e. RR ) |
| 22 | 21 | recnd | |- ( ph -> ( ( F ` B ) - ( F ` A ) ) e. CC ) |
| 23 | 22 | adantr | |- ( ( ph /\ z e. ( A [,] B ) ) -> ( ( F ` B ) - ( F ` A ) ) e. CC ) |
| 24 | cncff | |- ( G e. ( ( A [,] B ) -cn-> RR ) -> G : ( A [,] B ) --> RR ) |
|
| 25 | 5 24 | syl | |- ( ph -> G : ( A [,] B ) --> RR ) |
| 26 | 25 | ffvelcdmda | |- ( ( ph /\ z e. ( A [,] B ) ) -> ( G ` z ) e. RR ) |
| 27 | 26 | recnd | |- ( ( ph /\ z e. ( A [,] B ) ) -> ( G ` z ) e. CC ) |
| 28 | ovmpot | |- ( ( ( ( F ` B ) - ( F ` A ) ) e. CC /\ ( G ` z ) e. CC ) -> ( ( ( F ` B ) - ( F ` A ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( G ` z ) ) = ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) ) |
|
| 29 | 23 27 28 | syl2anc | |- ( ( ph /\ z e. ( A [,] B ) ) -> ( ( ( F ` B ) - ( F ` A ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( G ` z ) ) = ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) ) |
| 30 | 29 | eqeq2d | |- ( ( ph /\ z e. ( A [,] B ) ) -> ( w = ( ( ( F ` B ) - ( F ` A ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( G ` z ) ) <-> w = ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) ) ) |
| 31 | 30 | pm5.32da | |- ( ph -> ( ( z e. ( A [,] B ) /\ w = ( ( ( F ` B ) - ( F ` A ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( G ` z ) ) ) <-> ( z e. ( A [,] B ) /\ w = ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) ) ) ) |
| 32 | 31 | opabbidv | |- ( ph -> { <. z , w >. | ( z e. ( A [,] B ) /\ w = ( ( ( F ` B ) - ( F ` A ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( G ` z ) ) ) } = { <. z , w >. | ( z e. ( A [,] B ) /\ w = ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) ) } ) |
| 33 | df-mpt | |- ( z e. ( A [,] B ) |-> ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) ) = { <. z , w >. | ( z e. ( A [,] B ) /\ w = ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) ) } |
|
| 34 | 32 33 | eqtr4di | |- ( ph -> { <. z , w >. | ( z e. ( A [,] B ) /\ w = ( ( ( F ` B ) - ( F ` A ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( G ` z ) ) ) } = ( z e. ( A [,] B ) |-> ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) ) ) |
| 35 | df-mpt | |- ( z e. ( A [,] B ) |-> ( ( ( F ` B ) - ( F ` A ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( G ` z ) ) ) = { <. z , w >. | ( z e. ( A [,] B ) /\ w = ( ( ( F ` B ) - ( F ` A ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( G ` z ) ) ) } |
|
| 36 | 8 | mpomulcn | |- ( u e. CC , v e. CC |-> ( u x. v ) ) e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) |
| 37 | 1 2 | iccssred | |- ( ph -> ( A [,] B ) C_ RR ) |
| 38 | ax-resscn | |- RR C_ CC |
|
| 39 | 37 38 | sstrdi | |- ( ph -> ( A [,] B ) C_ CC ) |
| 40 | 38 | a1i | |- ( ph -> RR C_ CC ) |
| 41 | cncfmptc | |- ( ( ( ( F ` B ) - ( F ` A ) ) e. RR /\ ( A [,] B ) C_ CC /\ RR C_ CC ) -> ( z e. ( A [,] B ) |-> ( ( F ` B ) - ( F ` A ) ) ) e. ( ( A [,] B ) -cn-> RR ) ) |
|
| 42 | 21 39 40 41 | syl3anc | |- ( ph -> ( z e. ( A [,] B ) |-> ( ( F ` B ) - ( F ` A ) ) ) e. ( ( A [,] B ) -cn-> RR ) ) |
| 43 | 25 | feqmptd | |- ( ph -> G = ( z e. ( A [,] B ) |-> ( G ` z ) ) ) |
| 44 | 43 5 | eqeltrrd | |- ( ph -> ( z e. ( A [,] B ) |-> ( G ` z ) ) e. ( ( A [,] B ) -cn-> RR ) ) |
| 45 | simpl | |- ( ( ( ( F ` B ) - ( F ` A ) ) e. RR /\ ( G ` z ) e. RR ) -> ( ( F ` B ) - ( F ` A ) ) e. RR ) |
|
| 46 | 45 | recnd | |- ( ( ( ( F ` B ) - ( F ` A ) ) e. RR /\ ( G ` z ) e. RR ) -> ( ( F ` B ) - ( F ` A ) ) e. CC ) |
| 47 | simpr | |- ( ( ( ( F ` B ) - ( F ` A ) ) e. RR /\ ( G ` z ) e. RR ) -> ( G ` z ) e. RR ) |
|
| 48 | 47 | recnd | |- ( ( ( ( F ` B ) - ( F ` A ) ) e. RR /\ ( G ` z ) e. RR ) -> ( G ` z ) e. CC ) |
| 49 | 28 | eqcomd | |- ( ( ( ( F ` B ) - ( F ` A ) ) e. CC /\ ( G ` z ) e. CC ) -> ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) = ( ( ( F ` B ) - ( F ` A ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( G ` z ) ) ) |
| 50 | 46 48 49 | syl2anc | |- ( ( ( ( F ` B ) - ( F ` A ) ) e. RR /\ ( G ` z ) e. RR ) -> ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) = ( ( ( F ` B ) - ( F ` A ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( G ` z ) ) ) |
| 51 | remulcl | |- ( ( ( ( F ` B ) - ( F ` A ) ) e. RR /\ ( G ` z ) e. RR ) -> ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) e. RR ) |
|
| 52 | 50 51 | eqeltrrd | |- ( ( ( ( F ` B ) - ( F ` A ) ) e. RR /\ ( G ` z ) e. RR ) -> ( ( ( F ` B ) - ( F ` A ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( G ` z ) ) e. RR ) |
| 53 | 8 36 42 44 38 52 | cncfmpt2ss | |- ( ph -> ( z e. ( A [,] B ) |-> ( ( ( F ` B ) - ( F ` A ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( G ` z ) ) ) e. ( ( A [,] B ) -cn-> RR ) ) |
| 54 | 35 53 | eqeltrrid | |- ( ph -> { <. z , w >. | ( z e. ( A [,] B ) /\ w = ( ( ( F ` B ) - ( F ` A ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( G ` z ) ) ) } e. ( ( A [,] B ) -cn-> RR ) ) |
| 55 | 34 54 | eqeltrrd | |- ( ph -> ( z e. ( A [,] B ) |-> ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) ) e. ( ( A [,] B ) -cn-> RR ) ) |
| 56 | 25 16 | ffvelcdmd | |- ( ph -> ( G ` B ) e. RR ) |
| 57 | 25 19 | ffvelcdmd | |- ( ph -> ( G ` A ) e. RR ) |
| 58 | 56 57 | resubcld | |- ( ph -> ( ( G ` B ) - ( G ` A ) ) e. RR ) |
| 59 | 58 | adantr | |- ( ( ph /\ z e. ( A [,] B ) ) -> ( ( G ` B ) - ( G ` A ) ) e. RR ) |
| 60 | 59 | recnd | |- ( ( ph /\ z e. ( A [,] B ) ) -> ( ( G ` B ) - ( G ` A ) ) e. CC ) |
| 61 | 11 | ffvelcdmda | |- ( ( ph /\ z e. ( A [,] B ) ) -> ( F ` z ) e. RR ) |
| 62 | 61 | recnd | |- ( ( ph /\ z e. ( A [,] B ) ) -> ( F ` z ) e. CC ) |
| 63 | ovmpot | |- ( ( ( ( G ` B ) - ( G ` A ) ) e. CC /\ ( F ` z ) e. CC ) -> ( ( ( G ` B ) - ( G ` A ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( F ` z ) ) = ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) ) |
|
| 64 | 60 62 63 | syl2anc | |- ( ( ph /\ z e. ( A [,] B ) ) -> ( ( ( G ` B ) - ( G ` A ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( F ` z ) ) = ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) ) |
| 65 | 64 | eqeq2d | |- ( ( ph /\ z e. ( A [,] B ) ) -> ( w = ( ( ( G ` B ) - ( G ` A ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( F ` z ) ) <-> w = ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) ) ) |
| 66 | 65 | pm5.32da | |- ( ph -> ( ( z e. ( A [,] B ) /\ w = ( ( ( G ` B ) - ( G ` A ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( F ` z ) ) ) <-> ( z e. ( A [,] B ) /\ w = ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) ) ) ) |
| 67 | 66 | opabbidv | |- ( ph -> { <. z , w >. | ( z e. ( A [,] B ) /\ w = ( ( ( G ` B ) - ( G ` A ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( F ` z ) ) ) } = { <. z , w >. | ( z e. ( A [,] B ) /\ w = ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) ) } ) |
| 68 | df-mpt | |- ( z e. ( A [,] B ) |-> ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) ) = { <. z , w >. | ( z e. ( A [,] B ) /\ w = ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) ) } |
|
| 69 | 67 68 | eqtr4di | |- ( ph -> { <. z , w >. | ( z e. ( A [,] B ) /\ w = ( ( ( G ` B ) - ( G ` A ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( F ` z ) ) ) } = ( z e. ( A [,] B ) |-> ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) ) ) |
| 70 | df-mpt | |- ( z e. ( A [,] B ) |-> ( ( ( G ` B ) - ( G ` A ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( F ` z ) ) ) = { <. z , w >. | ( z e. ( A [,] B ) /\ w = ( ( ( G ` B ) - ( G ` A ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( F ` z ) ) ) } |
|
| 71 | cncfmptc | |- ( ( ( ( G ` B ) - ( G ` A ) ) e. RR /\ ( A [,] B ) C_ CC /\ RR C_ CC ) -> ( z e. ( A [,] B ) |-> ( ( G ` B ) - ( G ` A ) ) ) e. ( ( A [,] B ) -cn-> RR ) ) |
|
| 72 | 58 39 40 71 | syl3anc | |- ( ph -> ( z e. ( A [,] B ) |-> ( ( G ` B ) - ( G ` A ) ) ) e. ( ( A [,] B ) -cn-> RR ) ) |
| 73 | 11 | feqmptd | |- ( ph -> F = ( z e. ( A [,] B ) |-> ( F ` z ) ) ) |
| 74 | 73 4 | eqeltrrd | |- ( ph -> ( z e. ( A [,] B ) |-> ( F ` z ) ) e. ( ( A [,] B ) -cn-> RR ) ) |
| 75 | simpl | |- ( ( ( ( G ` B ) - ( G ` A ) ) e. RR /\ ( F ` z ) e. RR ) -> ( ( G ` B ) - ( G ` A ) ) e. RR ) |
|
| 76 | 75 | recnd | |- ( ( ( ( G ` B ) - ( G ` A ) ) e. RR /\ ( F ` z ) e. RR ) -> ( ( G ` B ) - ( G ` A ) ) e. CC ) |
| 77 | simpr | |- ( ( ( ( G ` B ) - ( G ` A ) ) e. RR /\ ( F ` z ) e. RR ) -> ( F ` z ) e. RR ) |
|
| 78 | 77 | recnd | |- ( ( ( ( G ` B ) - ( G ` A ) ) e. RR /\ ( F ` z ) e. RR ) -> ( F ` z ) e. CC ) |
| 79 | 63 | eqcomd | |- ( ( ( ( G ` B ) - ( G ` A ) ) e. CC /\ ( F ` z ) e. CC ) -> ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) = ( ( ( G ` B ) - ( G ` A ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( F ` z ) ) ) |
| 80 | 76 78 79 | syl2anc | |- ( ( ( ( G ` B ) - ( G ` A ) ) e. RR /\ ( F ` z ) e. RR ) -> ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) = ( ( ( G ` B ) - ( G ` A ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( F ` z ) ) ) |
| 81 | remulcl | |- ( ( ( ( G ` B ) - ( G ` A ) ) e. RR /\ ( F ` z ) e. RR ) -> ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) e. RR ) |
|
| 82 | 80 81 | eqeltrrd | |- ( ( ( ( G ` B ) - ( G ` A ) ) e. RR /\ ( F ` z ) e. RR ) -> ( ( ( G ` B ) - ( G ` A ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( F ` z ) ) e. RR ) |
| 83 | 8 36 72 74 38 82 | cncfmpt2ss | |- ( ph -> ( z e. ( A [,] B ) |-> ( ( ( G ` B ) - ( G ` A ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( F ` z ) ) ) e. ( ( A [,] B ) -cn-> RR ) ) |
| 84 | 70 83 | eqeltrrid | |- ( ph -> { <. z , w >. | ( z e. ( A [,] B ) /\ w = ( ( ( G ` B ) - ( G ` A ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( F ` z ) ) ) } e. ( ( A [,] B ) -cn-> RR ) ) |
| 85 | 69 84 | eqeltrrd | |- ( ph -> ( z e. ( A [,] B ) |-> ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) ) e. ( ( A [,] B ) -cn-> RR ) ) |
| 86 | resubcl | |- ( ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) e. RR /\ ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) e. RR ) -> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) ) e. RR ) |
|
| 87 | 8 9 55 85 38 86 | cncfmpt2ss | |- ( ph -> ( z e. ( A [,] B ) |-> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) ) ) e. ( ( A [,] B ) -cn-> RR ) ) |
| 88 | 23 27 | mulcld | |- ( ( ph /\ z e. ( A [,] B ) ) -> ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) e. CC ) |
| 89 | 59 61 | remulcld | |- ( ( ph /\ z e. ( A [,] B ) ) -> ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) e. RR ) |
| 90 | 89 | recnd | |- ( ( ph /\ z e. ( A [,] B ) ) -> ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) e. CC ) |
| 91 | 88 90 | subcld | |- ( ( ph /\ z e. ( A [,] B ) ) -> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) ) e. CC ) |
| 92 | tgioo4 | |- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
|
| 93 | iccntr | |- ( ( A e. RR /\ B e. RR ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) = ( A (,) B ) ) |
|
| 94 | 1 2 93 | syl2anc | |- ( ph -> ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) = ( A (,) B ) ) |
| 95 | 40 37 91 92 8 94 | dvmptntr | |- ( ph -> ( RR _D ( z e. ( A [,] B ) |-> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) ) ) ) = ( RR _D ( z e. ( A (,) B ) |-> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) ) ) ) ) |
| 96 | reelprrecn | |- RR e. { RR , CC } |
|
| 97 | 96 | a1i | |- ( ph -> RR e. { RR , CC } ) |
| 98 | ioossicc | |- ( A (,) B ) C_ ( A [,] B ) |
|
| 99 | 98 | sseli | |- ( z e. ( A (,) B ) -> z e. ( A [,] B ) ) |
| 100 | 99 88 | sylan2 | |- ( ( ph /\ z e. ( A (,) B ) ) -> ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) e. CC ) |
| 101 | ovexd | |- ( ( ph /\ z e. ( A (,) B ) ) -> ( ( ( F ` B ) - ( F ` A ) ) x. ( ( RR _D G ) ` z ) ) e. _V ) |
|
| 102 | 99 27 | sylan2 | |- ( ( ph /\ z e. ( A (,) B ) ) -> ( G ` z ) e. CC ) |
| 103 | fvexd | |- ( ( ph /\ z e. ( A (,) B ) ) -> ( ( RR _D G ) ` z ) e. _V ) |
|
| 104 | 43 | oveq2d | |- ( ph -> ( RR _D G ) = ( RR _D ( z e. ( A [,] B ) |-> ( G ` z ) ) ) ) |
| 105 | dvf | |- ( RR _D G ) : dom ( RR _D G ) --> CC |
|
| 106 | 7 | feq2d | |- ( ph -> ( ( RR _D G ) : dom ( RR _D G ) --> CC <-> ( RR _D G ) : ( A (,) B ) --> CC ) ) |
| 107 | 105 106 | mpbii | |- ( ph -> ( RR _D G ) : ( A (,) B ) --> CC ) |
| 108 | 107 | feqmptd | |- ( ph -> ( RR _D G ) = ( z e. ( A (,) B ) |-> ( ( RR _D G ) ` z ) ) ) |
| 109 | 40 37 27 92 8 94 | dvmptntr | |- ( ph -> ( RR _D ( z e. ( A [,] B ) |-> ( G ` z ) ) ) = ( RR _D ( z e. ( A (,) B ) |-> ( G ` z ) ) ) ) |
| 110 | 104 108 109 | 3eqtr3rd | |- ( ph -> ( RR _D ( z e. ( A (,) B ) |-> ( G ` z ) ) ) = ( z e. ( A (,) B ) |-> ( ( RR _D G ) ` z ) ) ) |
| 111 | 97 102 103 110 22 | dvmptcmul | |- ( ph -> ( RR _D ( z e. ( A (,) B ) |-> ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) ) ) = ( z e. ( A (,) B ) |-> ( ( ( F ` B ) - ( F ` A ) ) x. ( ( RR _D G ) ` z ) ) ) ) |
| 112 | 99 90 | sylan2 | |- ( ( ph /\ z e. ( A (,) B ) ) -> ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) e. CC ) |
| 113 | ovexd | |- ( ( ph /\ z e. ( A (,) B ) ) -> ( ( ( G ` B ) - ( G ` A ) ) x. ( ( RR _D F ) ` z ) ) e. _V ) |
|
| 114 | 99 62 | sylan2 | |- ( ( ph /\ z e. ( A (,) B ) ) -> ( F ` z ) e. CC ) |
| 115 | fvexd | |- ( ( ph /\ z e. ( A (,) B ) ) -> ( ( RR _D F ) ` z ) e. _V ) |
|
| 116 | 73 | oveq2d | |- ( ph -> ( RR _D F ) = ( RR _D ( z e. ( A [,] B ) |-> ( F ` z ) ) ) ) |
| 117 | dvf | |- ( RR _D F ) : dom ( RR _D F ) --> CC |
|
| 118 | 6 | feq2d | |- ( ph -> ( ( RR _D F ) : dom ( RR _D F ) --> CC <-> ( RR _D F ) : ( A (,) B ) --> CC ) ) |
| 119 | 117 118 | mpbii | |- ( ph -> ( RR _D F ) : ( A (,) B ) --> CC ) |
| 120 | 119 | feqmptd | |- ( ph -> ( RR _D F ) = ( z e. ( A (,) B ) |-> ( ( RR _D F ) ` z ) ) ) |
| 121 | 40 37 62 92 8 94 | dvmptntr | |- ( ph -> ( RR _D ( z e. ( A [,] B ) |-> ( F ` z ) ) ) = ( RR _D ( z e. ( A (,) B ) |-> ( F ` z ) ) ) ) |
| 122 | 116 120 121 | 3eqtr3rd | |- ( ph -> ( RR _D ( z e. ( A (,) B ) |-> ( F ` z ) ) ) = ( z e. ( A (,) B ) |-> ( ( RR _D F ) ` z ) ) ) |
| 123 | 58 | recnd | |- ( ph -> ( ( G ` B ) - ( G ` A ) ) e. CC ) |
| 124 | 97 114 115 122 123 | dvmptcmul | |- ( ph -> ( RR _D ( z e. ( A (,) B ) |-> ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) ) ) = ( z e. ( A (,) B ) |-> ( ( ( G ` B ) - ( G ` A ) ) x. ( ( RR _D F ) ` z ) ) ) ) |
| 125 | 97 100 101 111 112 113 124 | dvmptsub | |- ( ph -> ( RR _D ( z e. ( A (,) B ) |-> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) ) ) ) = ( z e. ( A (,) B ) |-> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( ( RR _D G ) ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( ( RR _D F ) ` z ) ) ) ) ) |
| 126 | 95 125 | eqtrd | |- ( ph -> ( RR _D ( z e. ( A [,] B ) |-> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) ) ) ) = ( z e. ( A (,) B ) |-> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( ( RR _D G ) ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( ( RR _D F ) ` z ) ) ) ) ) |
| 127 | 126 | dmeqd | |- ( ph -> dom ( RR _D ( z e. ( A [,] B ) |-> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) ) ) ) = dom ( z e. ( A (,) B ) |-> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( ( RR _D G ) ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( ( RR _D F ) ` z ) ) ) ) ) |
| 128 | ovex | |- ( ( ( ( F ` B ) - ( F ` A ) ) x. ( ( RR _D G ) ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( ( RR _D F ) ` z ) ) ) e. _V |
|
| 129 | eqid | |- ( z e. ( A (,) B ) |-> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( ( RR _D G ) ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( ( RR _D F ) ` z ) ) ) ) = ( z e. ( A (,) B ) |-> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( ( RR _D G ) ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( ( RR _D F ) ` z ) ) ) ) |
|
| 130 | 128 129 | dmmpti | |- dom ( z e. ( A (,) B ) |-> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( ( RR _D G ) ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( ( RR _D F ) ` z ) ) ) ) = ( A (,) B ) |
| 131 | 127 130 | eqtrdi | |- ( ph -> dom ( RR _D ( z e. ( A [,] B ) |-> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) ) ) ) = ( A (,) B ) ) |
| 132 | 17 | recnd | |- ( ph -> ( F ` B ) e. CC ) |
| 133 | 57 | recnd | |- ( ph -> ( G ` A ) e. CC ) |
| 134 | 132 133 | mulcld | |- ( ph -> ( ( F ` B ) x. ( G ` A ) ) e. CC ) |
| 135 | 20 | recnd | |- ( ph -> ( F ` A ) e. CC ) |
| 136 | 56 | recnd | |- ( ph -> ( G ` B ) e. CC ) |
| 137 | 135 136 | mulcld | |- ( ph -> ( ( F ` A ) x. ( G ` B ) ) e. CC ) |
| 138 | 135 133 | mulcld | |- ( ph -> ( ( F ` A ) x. ( G ` A ) ) e. CC ) |
| 139 | 134 137 138 | nnncan2d | |- ( ph -> ( ( ( ( F ` B ) x. ( G ` A ) ) - ( ( F ` A ) x. ( G ` A ) ) ) - ( ( ( F ` A ) x. ( G ` B ) ) - ( ( F ` A ) x. ( G ` A ) ) ) ) = ( ( ( F ` B ) x. ( G ` A ) ) - ( ( F ` A ) x. ( G ` B ) ) ) ) |
| 140 | 132 136 | mulcld | |- ( ph -> ( ( F ` B ) x. ( G ` B ) ) e. CC ) |
| 141 | 140 137 134 | nnncan1d | |- ( ph -> ( ( ( ( F ` B ) x. ( G ` B ) ) - ( ( F ` A ) x. ( G ` B ) ) ) - ( ( ( F ` B ) x. ( G ` B ) ) - ( ( F ` B ) x. ( G ` A ) ) ) ) = ( ( ( F ` B ) x. ( G ` A ) ) - ( ( F ` A ) x. ( G ` B ) ) ) ) |
| 142 | 139 141 | eqtr4d | |- ( ph -> ( ( ( ( F ` B ) x. ( G ` A ) ) - ( ( F ` A ) x. ( G ` A ) ) ) - ( ( ( F ` A ) x. ( G ` B ) ) - ( ( F ` A ) x. ( G ` A ) ) ) ) = ( ( ( ( F ` B ) x. ( G ` B ) ) - ( ( F ` A ) x. ( G ` B ) ) ) - ( ( ( F ` B ) x. ( G ` B ) ) - ( ( F ` B ) x. ( G ` A ) ) ) ) ) |
| 143 | 132 135 133 | subdird | |- ( ph -> ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` A ) ) = ( ( ( F ` B ) x. ( G ` A ) ) - ( ( F ` A ) x. ( G ` A ) ) ) ) |
| 144 | 123 135 | mulcomd | |- ( ph -> ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` A ) ) = ( ( F ` A ) x. ( ( G ` B ) - ( G ` A ) ) ) ) |
| 145 | 135 136 133 | subdid | |- ( ph -> ( ( F ` A ) x. ( ( G ` B ) - ( G ` A ) ) ) = ( ( ( F ` A ) x. ( G ` B ) ) - ( ( F ` A ) x. ( G ` A ) ) ) ) |
| 146 | 144 145 | eqtrd | |- ( ph -> ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` A ) ) = ( ( ( F ` A ) x. ( G ` B ) ) - ( ( F ` A ) x. ( G ` A ) ) ) ) |
| 147 | 143 146 | oveq12d | |- ( ph -> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` A ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` A ) ) ) = ( ( ( ( F ` B ) x. ( G ` A ) ) - ( ( F ` A ) x. ( G ` A ) ) ) - ( ( ( F ` A ) x. ( G ` B ) ) - ( ( F ` A ) x. ( G ` A ) ) ) ) ) |
| 148 | 132 135 136 | subdird | |- ( ph -> ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` B ) ) = ( ( ( F ` B ) x. ( G ` B ) ) - ( ( F ` A ) x. ( G ` B ) ) ) ) |
| 149 | 123 132 | mulcomd | |- ( ph -> ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` B ) ) = ( ( F ` B ) x. ( ( G ` B ) - ( G ` A ) ) ) ) |
| 150 | 132 136 133 | subdid | |- ( ph -> ( ( F ` B ) x. ( ( G ` B ) - ( G ` A ) ) ) = ( ( ( F ` B ) x. ( G ` B ) ) - ( ( F ` B ) x. ( G ` A ) ) ) ) |
| 151 | 149 150 | eqtrd | |- ( ph -> ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` B ) ) = ( ( ( F ` B ) x. ( G ` B ) ) - ( ( F ` B ) x. ( G ` A ) ) ) ) |
| 152 | 148 151 | oveq12d | |- ( ph -> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` B ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` B ) ) ) = ( ( ( ( F ` B ) x. ( G ` B ) ) - ( ( F ` A ) x. ( G ` B ) ) ) - ( ( ( F ` B ) x. ( G ` B ) ) - ( ( F ` B ) x. ( G ` A ) ) ) ) ) |
| 153 | 142 147 152 | 3eqtr4d | |- ( ph -> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` A ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` A ) ) ) = ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` B ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` B ) ) ) ) |
| 154 | fveq2 | |- ( z = A -> ( G ` z ) = ( G ` A ) ) |
|
| 155 | 154 | oveq2d | |- ( z = A -> ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) = ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` A ) ) ) |
| 156 | fveq2 | |- ( z = A -> ( F ` z ) = ( F ` A ) ) |
|
| 157 | 156 | oveq2d | |- ( z = A -> ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) = ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` A ) ) ) |
| 158 | 155 157 | oveq12d | |- ( z = A -> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) ) = ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` A ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` A ) ) ) ) |
| 159 | eqid | |- ( z e. ( A [,] B ) |-> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) ) ) = ( z e. ( A [,] B ) |-> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) ) ) |
|
| 160 | ovex | |- ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) ) e. _V |
|
| 161 | 158 159 160 | fvmpt3i | |- ( A e. ( A [,] B ) -> ( ( z e. ( A [,] B ) |-> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) ) ) ` A ) = ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` A ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` A ) ) ) ) |
| 162 | 19 161 | syl | |- ( ph -> ( ( z e. ( A [,] B ) |-> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) ) ) ` A ) = ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` A ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` A ) ) ) ) |
| 163 | fveq2 | |- ( z = B -> ( G ` z ) = ( G ` B ) ) |
|
| 164 | 163 | oveq2d | |- ( z = B -> ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) = ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` B ) ) ) |
| 165 | fveq2 | |- ( z = B -> ( F ` z ) = ( F ` B ) ) |
|
| 166 | 165 | oveq2d | |- ( z = B -> ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) = ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` B ) ) ) |
| 167 | 164 166 | oveq12d | |- ( z = B -> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) ) = ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` B ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` B ) ) ) ) |
| 168 | 167 159 160 | fvmpt3i | |- ( B e. ( A [,] B ) -> ( ( z e. ( A [,] B ) |-> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) ) ) ` B ) = ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` B ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` B ) ) ) ) |
| 169 | 16 168 | syl | |- ( ph -> ( ( z e. ( A [,] B ) |-> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) ) ) ` B ) = ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` B ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` B ) ) ) ) |
| 170 | 153 162 169 | 3eqtr4d | |- ( ph -> ( ( z e. ( A [,] B ) |-> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) ) ) ` A ) = ( ( z e. ( A [,] B ) |-> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) ) ) ` B ) ) |
| 171 | 1 2 3 87 131 170 | rolle | |- ( ph -> E. x e. ( A (,) B ) ( ( RR _D ( z e. ( A [,] B ) |-> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) ) ) ) ` x ) = 0 ) |
| 172 | 126 | fveq1d | |- ( ph -> ( ( RR _D ( z e. ( A [,] B ) |-> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) ) ) ) ` x ) = ( ( z e. ( A (,) B ) |-> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( ( RR _D G ) ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( ( RR _D F ) ` z ) ) ) ) ` x ) ) |
| 173 | fveq2 | |- ( z = x -> ( ( RR _D G ) ` z ) = ( ( RR _D G ) ` x ) ) |
|
| 174 | 173 | oveq2d | |- ( z = x -> ( ( ( F ` B ) - ( F ` A ) ) x. ( ( RR _D G ) ` z ) ) = ( ( ( F ` B ) - ( F ` A ) ) x. ( ( RR _D G ) ` x ) ) ) |
| 175 | fveq2 | |- ( z = x -> ( ( RR _D F ) ` z ) = ( ( RR _D F ) ` x ) ) |
|
| 176 | 175 | oveq2d | |- ( z = x -> ( ( ( G ` B ) - ( G ` A ) ) x. ( ( RR _D F ) ` z ) ) = ( ( ( G ` B ) - ( G ` A ) ) x. ( ( RR _D F ) ` x ) ) ) |
| 177 | 174 176 | oveq12d | |- ( z = x -> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( ( RR _D G ) ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( ( RR _D F ) ` z ) ) ) = ( ( ( ( F ` B ) - ( F ` A ) ) x. ( ( RR _D G ) ` x ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( ( RR _D F ) ` x ) ) ) ) |
| 178 | 177 129 128 | fvmpt3i | |- ( x e. ( A (,) B ) -> ( ( z e. ( A (,) B ) |-> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( ( RR _D G ) ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( ( RR _D F ) ` z ) ) ) ) ` x ) = ( ( ( ( F ` B ) - ( F ` A ) ) x. ( ( RR _D G ) ` x ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( ( RR _D F ) ` x ) ) ) ) |
| 179 | 172 178 | sylan9eq | |- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( RR _D ( z e. ( A [,] B ) |-> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) ) ) ) ` x ) = ( ( ( ( F ` B ) - ( F ` A ) ) x. ( ( RR _D G ) ` x ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( ( RR _D F ) ` x ) ) ) ) |
| 180 | 179 | eqeq1d | |- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( ( RR _D ( z e. ( A [,] B ) |-> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) ) ) ) ` x ) = 0 <-> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( ( RR _D G ) ` x ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( ( RR _D F ) ` x ) ) ) = 0 ) ) |
| 181 | 22 | adantr | |- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( F ` B ) - ( F ` A ) ) e. CC ) |
| 182 | 107 | ffvelcdmda | |- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( RR _D G ) ` x ) e. CC ) |
| 183 | 181 182 | mulcld | |- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( ( F ` B ) - ( F ` A ) ) x. ( ( RR _D G ) ` x ) ) e. CC ) |
| 184 | 123 | adantr | |- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( G ` B ) - ( G ` A ) ) e. CC ) |
| 185 | 119 | ffvelcdmda | |- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( RR _D F ) ` x ) e. CC ) |
| 186 | 184 185 | mulcld | |- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( ( G ` B ) - ( G ` A ) ) x. ( ( RR _D F ) ` x ) ) e. CC ) |
| 187 | 183 186 | subeq0ad | |- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( ( ( ( F ` B ) - ( F ` A ) ) x. ( ( RR _D G ) ` x ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( ( RR _D F ) ` x ) ) ) = 0 <-> ( ( ( F ` B ) - ( F ` A ) ) x. ( ( RR _D G ) ` x ) ) = ( ( ( G ` B ) - ( G ` A ) ) x. ( ( RR _D F ) ` x ) ) ) ) |
| 188 | 180 187 | bitrd | |- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( ( RR _D ( z e. ( A [,] B ) |-> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) ) ) ) ` x ) = 0 <-> ( ( ( F ` B ) - ( F ` A ) ) x. ( ( RR _D G ) ` x ) ) = ( ( ( G ` B ) - ( G ` A ) ) x. ( ( RR _D F ) ` x ) ) ) ) |
| 189 | 188 | rexbidva | |- ( ph -> ( E. x e. ( A (,) B ) ( ( RR _D ( z e. ( A [,] B ) |-> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) ) ) ) ` x ) = 0 <-> E. x e. ( A (,) B ) ( ( ( F ` B ) - ( F ` A ) ) x. ( ( RR _D G ) ` x ) ) = ( ( ( G ` B ) - ( G ` A ) ) x. ( ( RR _D F ) ` x ) ) ) ) |
| 190 | 171 189 | mpbid | |- ( ph -> E. x e. ( A (,) B ) ( ( ( F ` B ) - ( F ` A ) ) x. ( ( RR _D G ) ` x ) ) = ( ( ( G ` B ) - ( G ` A ) ) x. ( ( RR _D F ) ` x ) ) ) |