This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Complementation of restricted class abstractions. (Contributed by Mario Carneiro, 3-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | notrab | |- ( A \ { x e. A | ph } ) = { x e. A | -. ph } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difab | |- ( { x | x e. A } \ { x | ph } ) = { x | ( x e. A /\ -. ph ) } |
|
| 2 | difin | |- ( A \ ( A i^i { x | ph } ) ) = ( A \ { x | ph } ) |
|
| 3 | dfrab3 | |- { x e. A | ph } = ( A i^i { x | ph } ) |
|
| 4 | 3 | difeq2i | |- ( A \ { x e. A | ph } ) = ( A \ ( A i^i { x | ph } ) ) |
| 5 | abid2 | |- { x | x e. A } = A |
|
| 6 | 5 | difeq1i | |- ( { x | x e. A } \ { x | ph } ) = ( A \ { x | ph } ) |
| 7 | 2 4 6 | 3eqtr4i | |- ( A \ { x e. A | ph } ) = ( { x | x e. A } \ { x | ph } ) |
| 8 | df-rab | |- { x e. A | -. ph } = { x | ( x e. A /\ -. ph ) } |
|
| 9 | 1 7 8 | 3eqtr4i | |- ( A \ { x e. A | ph } ) = { x e. A | -. ph } |