This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subspace topology is a topology on the base set. (Contributed by Mario Carneiro, 13-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | resttopon | |- ( ( J e. ( TopOn ` X ) /\ A C_ X ) -> ( J |`t A ) e. ( TopOn ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | topontop | |- ( J e. ( TopOn ` X ) -> J e. Top ) |
|
| 2 | id | |- ( A C_ X -> A C_ X ) |
|
| 3 | toponmax | |- ( J e. ( TopOn ` X ) -> X e. J ) |
|
| 4 | ssexg | |- ( ( A C_ X /\ X e. J ) -> A e. _V ) |
|
| 5 | 2 3 4 | syl2anr | |- ( ( J e. ( TopOn ` X ) /\ A C_ X ) -> A e. _V ) |
| 6 | resttop | |- ( ( J e. Top /\ A e. _V ) -> ( J |`t A ) e. Top ) |
|
| 7 | 1 5 6 | syl2an2r | |- ( ( J e. ( TopOn ` X ) /\ A C_ X ) -> ( J |`t A ) e. Top ) |
| 8 | simpr | |- ( ( J e. ( TopOn ` X ) /\ A C_ X ) -> A C_ X ) |
|
| 9 | sseqin2 | |- ( A C_ X <-> ( X i^i A ) = A ) |
|
| 10 | 8 9 | sylib | |- ( ( J e. ( TopOn ` X ) /\ A C_ X ) -> ( X i^i A ) = A ) |
| 11 | simpl | |- ( ( J e. ( TopOn ` X ) /\ A C_ X ) -> J e. ( TopOn ` X ) ) |
|
| 12 | 3 | adantr | |- ( ( J e. ( TopOn ` X ) /\ A C_ X ) -> X e. J ) |
| 13 | elrestr | |- ( ( J e. ( TopOn ` X ) /\ A e. _V /\ X e. J ) -> ( X i^i A ) e. ( J |`t A ) ) |
|
| 14 | 11 5 12 13 | syl3anc | |- ( ( J e. ( TopOn ` X ) /\ A C_ X ) -> ( X i^i A ) e. ( J |`t A ) ) |
| 15 | 10 14 | eqeltrrd | |- ( ( J e. ( TopOn ` X ) /\ A C_ X ) -> A e. ( J |`t A ) ) |
| 16 | elssuni | |- ( A e. ( J |`t A ) -> A C_ U. ( J |`t A ) ) |
|
| 17 | 15 16 | syl | |- ( ( J e. ( TopOn ` X ) /\ A C_ X ) -> A C_ U. ( J |`t A ) ) |
| 18 | restval | |- ( ( J e. ( TopOn ` X ) /\ A e. _V ) -> ( J |`t A ) = ran ( x e. J |-> ( x i^i A ) ) ) |
|
| 19 | 5 18 | syldan | |- ( ( J e. ( TopOn ` X ) /\ A C_ X ) -> ( J |`t A ) = ran ( x e. J |-> ( x i^i A ) ) ) |
| 20 | inss2 | |- ( x i^i A ) C_ A |
|
| 21 | vex | |- x e. _V |
|
| 22 | 21 | inex1 | |- ( x i^i A ) e. _V |
| 23 | 22 | elpw | |- ( ( x i^i A ) e. ~P A <-> ( x i^i A ) C_ A ) |
| 24 | 20 23 | mpbir | |- ( x i^i A ) e. ~P A |
| 25 | 24 | a1i | |- ( ( ( J e. ( TopOn ` X ) /\ A C_ X ) /\ x e. J ) -> ( x i^i A ) e. ~P A ) |
| 26 | 25 | fmpttd | |- ( ( J e. ( TopOn ` X ) /\ A C_ X ) -> ( x e. J |-> ( x i^i A ) ) : J --> ~P A ) |
| 27 | 26 | frnd | |- ( ( J e. ( TopOn ` X ) /\ A C_ X ) -> ran ( x e. J |-> ( x i^i A ) ) C_ ~P A ) |
| 28 | 19 27 | eqsstrd | |- ( ( J e. ( TopOn ` X ) /\ A C_ X ) -> ( J |`t A ) C_ ~P A ) |
| 29 | sspwuni | |- ( ( J |`t A ) C_ ~P A <-> U. ( J |`t A ) C_ A ) |
|
| 30 | 28 29 | sylib | |- ( ( J e. ( TopOn ` X ) /\ A C_ X ) -> U. ( J |`t A ) C_ A ) |
| 31 | 17 30 | eqssd | |- ( ( J e. ( TopOn ` X ) /\ A C_ X ) -> A = U. ( J |`t A ) ) |
| 32 | istopon | |- ( ( J |`t A ) e. ( TopOn ` A ) <-> ( ( J |`t A ) e. Top /\ A = U. ( J |`t A ) ) ) |
|
| 33 | 7 31 32 | sylanbrc | |- ( ( J e. ( TopOn ` X ) /\ A C_ X ) -> ( J |`t A ) e. ( TopOn ` A ) ) |