This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of the limit operator. (Contributed by Mario Carneiro, 25-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | limccl | |- ( F limCC B ) C_ CC |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limcrcl | |- ( x e. ( F limCC B ) -> ( F : dom F --> CC /\ dom F C_ CC /\ B e. CC ) ) |
|
| 2 | eqid | |- ( ( TopOpen ` CCfld ) |`t ( dom F u. { B } ) ) = ( ( TopOpen ` CCfld ) |`t ( dom F u. { B } ) ) |
|
| 3 | eqid | |- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
|
| 4 | 2 3 | limcfval | |- ( ( F : dom F --> CC /\ dom F C_ CC /\ B e. CC ) -> ( ( F limCC B ) = { y | ( z e. ( dom F u. { B } ) |-> if ( z = B , y , ( F ` z ) ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t ( dom F u. { B } ) ) CnP ( TopOpen ` CCfld ) ) ` B ) } /\ ( F limCC B ) C_ CC ) ) |
| 5 | 1 4 | syl | |- ( x e. ( F limCC B ) -> ( ( F limCC B ) = { y | ( z e. ( dom F u. { B } ) |-> if ( z = B , y , ( F ` z ) ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t ( dom F u. { B } ) ) CnP ( TopOpen ` CCfld ) ) ` B ) } /\ ( F limCC B ) C_ CC ) ) |
| 6 | 5 | simprd | |- ( x e. ( F limCC B ) -> ( F limCC B ) C_ CC ) |
| 7 | id | |- ( x e. ( F limCC B ) -> x e. ( F limCC B ) ) |
|
| 8 | 6 7 | sseldd | |- ( x e. ( F limCC B ) -> x e. CC ) |
| 9 | 8 | ssriv | |- ( F limCC B ) C_ CC |