This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Existential quantification under an image in terms of the base set. (Contributed by Stefan O'Rear, 21-Jan-2015) Reduce DV conditions. (Revised by Matthew House, 14-Aug-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ralima.x | |- ( x = ( F ` y ) -> ( ph <-> ps ) ) |
|
| Assertion | rexima | |- ( ( F Fn A /\ B C_ A ) -> ( E. x e. ( F " B ) ph <-> E. y e. B ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralima.x | |- ( x = ( F ` y ) -> ( ph <-> ps ) ) |
|
| 2 | 1 | notbid | |- ( x = ( F ` y ) -> ( -. ph <-> -. ps ) ) |
| 3 | 2 | ralima | |- ( ( F Fn A /\ B C_ A ) -> ( A. x e. ( F " B ) -. ph <-> A. y e. B -. ps ) ) |
| 4 | 3 | notbid | |- ( ( F Fn A /\ B C_ A ) -> ( -. A. x e. ( F " B ) -. ph <-> -. A. y e. B -. ps ) ) |
| 5 | dfrex2 | |- ( E. x e. ( F " B ) ph <-> -. A. x e. ( F " B ) -. ph ) |
|
| 6 | dfrex2 | |- ( E. y e. B ps <-> -. A. y e. B -. ps ) |
|
| 7 | 4 5 6 | 3bitr4g | |- ( ( F Fn A /\ B C_ A ) -> ( E. x e. ( F " B ) ph <-> E. y e. B ps ) ) |