This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An open set of a metric space includes an arbitrarily small ball around each of its points. (Contributed by NM, 20-Sep-2007) (Revised by Mario Carneiro, 12-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | mopni.1 | |- J = ( MetOpen ` D ) |
|
| Assertion | mopni3 | |- ( ( ( D e. ( *Met ` X ) /\ A e. J /\ P e. A ) /\ R e. RR+ ) -> E. x e. RR+ ( x < R /\ ( P ( ball ` D ) x ) C_ A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mopni.1 | |- J = ( MetOpen ` D ) |
|
| 2 | 1 | mopni2 | |- ( ( D e. ( *Met ` X ) /\ A e. J /\ P e. A ) -> E. y e. RR+ ( P ( ball ` D ) y ) C_ A ) |
| 3 | 2 | adantr | |- ( ( ( D e. ( *Met ` X ) /\ A e. J /\ P e. A ) /\ R e. RR+ ) -> E. y e. RR+ ( P ( ball ` D ) y ) C_ A ) |
| 4 | simp1 | |- ( ( D e. ( *Met ` X ) /\ A e. J /\ P e. A ) -> D e. ( *Met ` X ) ) |
|
| 5 | 1 | mopnss | |- ( ( D e. ( *Met ` X ) /\ A e. J ) -> A C_ X ) |
| 6 | 5 | sselda | |- ( ( ( D e. ( *Met ` X ) /\ A e. J ) /\ P e. A ) -> P e. X ) |
| 7 | 6 | 3impa | |- ( ( D e. ( *Met ` X ) /\ A e. J /\ P e. A ) -> P e. X ) |
| 8 | 4 7 | jca | |- ( ( D e. ( *Met ` X ) /\ A e. J /\ P e. A ) -> ( D e. ( *Met ` X ) /\ P e. X ) ) |
| 9 | ssblex | |- ( ( ( D e. ( *Met ` X ) /\ P e. X ) /\ ( R e. RR+ /\ y e. RR+ ) ) -> E. x e. RR+ ( x < R /\ ( P ( ball ` D ) x ) C_ ( P ( ball ` D ) y ) ) ) |
|
| 10 | 8 9 | sylan | |- ( ( ( D e. ( *Met ` X ) /\ A e. J /\ P e. A ) /\ ( R e. RR+ /\ y e. RR+ ) ) -> E. x e. RR+ ( x < R /\ ( P ( ball ` D ) x ) C_ ( P ( ball ` D ) y ) ) ) |
| 11 | 10 | anassrs | |- ( ( ( ( D e. ( *Met ` X ) /\ A e. J /\ P e. A ) /\ R e. RR+ ) /\ y e. RR+ ) -> E. x e. RR+ ( x < R /\ ( P ( ball ` D ) x ) C_ ( P ( ball ` D ) y ) ) ) |
| 12 | sstr | |- ( ( ( P ( ball ` D ) x ) C_ ( P ( ball ` D ) y ) /\ ( P ( ball ` D ) y ) C_ A ) -> ( P ( ball ` D ) x ) C_ A ) |
|
| 13 | 12 | expcom | |- ( ( P ( ball ` D ) y ) C_ A -> ( ( P ( ball ` D ) x ) C_ ( P ( ball ` D ) y ) -> ( P ( ball ` D ) x ) C_ A ) ) |
| 14 | 13 | anim2d | |- ( ( P ( ball ` D ) y ) C_ A -> ( ( x < R /\ ( P ( ball ` D ) x ) C_ ( P ( ball ` D ) y ) ) -> ( x < R /\ ( P ( ball ` D ) x ) C_ A ) ) ) |
| 15 | 14 | reximdv | |- ( ( P ( ball ` D ) y ) C_ A -> ( E. x e. RR+ ( x < R /\ ( P ( ball ` D ) x ) C_ ( P ( ball ` D ) y ) ) -> E. x e. RR+ ( x < R /\ ( P ( ball ` D ) x ) C_ A ) ) ) |
| 16 | 11 15 | syl5com | |- ( ( ( ( D e. ( *Met ` X ) /\ A e. J /\ P e. A ) /\ R e. RR+ ) /\ y e. RR+ ) -> ( ( P ( ball ` D ) y ) C_ A -> E. x e. RR+ ( x < R /\ ( P ( ball ` D ) x ) C_ A ) ) ) |
| 17 | 16 | rexlimdva | |- ( ( ( D e. ( *Met ` X ) /\ A e. J /\ P e. A ) /\ R e. RR+ ) -> ( E. y e. RR+ ( P ( ball ` D ) y ) C_ A -> E. x e. RR+ ( x < R /\ ( P ( ball ` D ) x ) C_ A ) ) ) |
| 18 | 3 17 | mpd | |- ( ( ( D e. ( *Met ` X ) /\ A e. J /\ P e. A ) /\ R e. RR+ ) -> E. x e. RR+ ( x < R /\ ( P ( ball ` D ) x ) C_ A ) ) |