This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any limit of F is also a limit of the restriction of F . (Contributed by Mario Carneiro, 28-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | limcresi | |- ( F limCC B ) C_ ( ( F |` C ) limCC B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limcrcl | |- ( x e. ( F limCC B ) -> ( F : dom F --> CC /\ dom F C_ CC /\ B e. CC ) ) |
|
| 2 | 1 | simp1d | |- ( x e. ( F limCC B ) -> F : dom F --> CC ) |
| 3 | 1 | simp2d | |- ( x e. ( F limCC B ) -> dom F C_ CC ) |
| 4 | 1 | simp3d | |- ( x e. ( F limCC B ) -> B e. CC ) |
| 5 | eqid | |- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
|
| 6 | 2 3 4 5 | ellimc2 | |- ( x e. ( F limCC B ) -> ( x e. ( F limCC B ) <-> ( x e. CC /\ A. u e. ( TopOpen ` CCfld ) ( x e. u -> E. v e. ( TopOpen ` CCfld ) ( B e. v /\ ( F " ( v i^i ( dom F \ { B } ) ) ) C_ u ) ) ) ) ) |
| 7 | 6 | ibi | |- ( x e. ( F limCC B ) -> ( x e. CC /\ A. u e. ( TopOpen ` CCfld ) ( x e. u -> E. v e. ( TopOpen ` CCfld ) ( B e. v /\ ( F " ( v i^i ( dom F \ { B } ) ) ) C_ u ) ) ) ) |
| 8 | inss2 | |- ( v i^i ( ( dom F i^i C ) \ { B } ) ) C_ ( ( dom F i^i C ) \ { B } ) |
|
| 9 | difss | |- ( ( dom F i^i C ) \ { B } ) C_ ( dom F i^i C ) |
|
| 10 | inss2 | |- ( dom F i^i C ) C_ C |
|
| 11 | 9 10 | sstri | |- ( ( dom F i^i C ) \ { B } ) C_ C |
| 12 | 8 11 | sstri | |- ( v i^i ( ( dom F i^i C ) \ { B } ) ) C_ C |
| 13 | resima2 | |- ( ( v i^i ( ( dom F i^i C ) \ { B } ) ) C_ C -> ( ( F |` C ) " ( v i^i ( ( dom F i^i C ) \ { B } ) ) ) = ( F " ( v i^i ( ( dom F i^i C ) \ { B } ) ) ) ) |
|
| 14 | 12 13 | ax-mp | |- ( ( F |` C ) " ( v i^i ( ( dom F i^i C ) \ { B } ) ) ) = ( F " ( v i^i ( ( dom F i^i C ) \ { B } ) ) ) |
| 15 | inss1 | |- ( dom F i^i C ) C_ dom F |
|
| 16 | ssdif | |- ( ( dom F i^i C ) C_ dom F -> ( ( dom F i^i C ) \ { B } ) C_ ( dom F \ { B } ) ) |
|
| 17 | 15 16 | ax-mp | |- ( ( dom F i^i C ) \ { B } ) C_ ( dom F \ { B } ) |
| 18 | sslin | |- ( ( ( dom F i^i C ) \ { B } ) C_ ( dom F \ { B } ) -> ( v i^i ( ( dom F i^i C ) \ { B } ) ) C_ ( v i^i ( dom F \ { B } ) ) ) |
|
| 19 | imass2 | |- ( ( v i^i ( ( dom F i^i C ) \ { B } ) ) C_ ( v i^i ( dom F \ { B } ) ) -> ( F " ( v i^i ( ( dom F i^i C ) \ { B } ) ) ) C_ ( F " ( v i^i ( dom F \ { B } ) ) ) ) |
|
| 20 | 17 18 19 | mp2b | |- ( F " ( v i^i ( ( dom F i^i C ) \ { B } ) ) ) C_ ( F " ( v i^i ( dom F \ { B } ) ) ) |
| 21 | 14 20 | eqsstri | |- ( ( F |` C ) " ( v i^i ( ( dom F i^i C ) \ { B } ) ) ) C_ ( F " ( v i^i ( dom F \ { B } ) ) ) |
| 22 | sstr | |- ( ( ( ( F |` C ) " ( v i^i ( ( dom F i^i C ) \ { B } ) ) ) C_ ( F " ( v i^i ( dom F \ { B } ) ) ) /\ ( F " ( v i^i ( dom F \ { B } ) ) ) C_ u ) -> ( ( F |` C ) " ( v i^i ( ( dom F i^i C ) \ { B } ) ) ) C_ u ) |
|
| 23 | 21 22 | mpan | |- ( ( F " ( v i^i ( dom F \ { B } ) ) ) C_ u -> ( ( F |` C ) " ( v i^i ( ( dom F i^i C ) \ { B } ) ) ) C_ u ) |
| 24 | 23 | anim2i | |- ( ( B e. v /\ ( F " ( v i^i ( dom F \ { B } ) ) ) C_ u ) -> ( B e. v /\ ( ( F |` C ) " ( v i^i ( ( dom F i^i C ) \ { B } ) ) ) C_ u ) ) |
| 25 | 24 | reximi | |- ( E. v e. ( TopOpen ` CCfld ) ( B e. v /\ ( F " ( v i^i ( dom F \ { B } ) ) ) C_ u ) -> E. v e. ( TopOpen ` CCfld ) ( B e. v /\ ( ( F |` C ) " ( v i^i ( ( dom F i^i C ) \ { B } ) ) ) C_ u ) ) |
| 26 | 25 | imim2i | |- ( ( x e. u -> E. v e. ( TopOpen ` CCfld ) ( B e. v /\ ( F " ( v i^i ( dom F \ { B } ) ) ) C_ u ) ) -> ( x e. u -> E. v e. ( TopOpen ` CCfld ) ( B e. v /\ ( ( F |` C ) " ( v i^i ( ( dom F i^i C ) \ { B } ) ) ) C_ u ) ) ) |
| 27 | 26 | ralimi | |- ( A. u e. ( TopOpen ` CCfld ) ( x e. u -> E. v e. ( TopOpen ` CCfld ) ( B e. v /\ ( F " ( v i^i ( dom F \ { B } ) ) ) C_ u ) ) -> A. u e. ( TopOpen ` CCfld ) ( x e. u -> E. v e. ( TopOpen ` CCfld ) ( B e. v /\ ( ( F |` C ) " ( v i^i ( ( dom F i^i C ) \ { B } ) ) ) C_ u ) ) ) |
| 28 | 27 | anim2i | |- ( ( x e. CC /\ A. u e. ( TopOpen ` CCfld ) ( x e. u -> E. v e. ( TopOpen ` CCfld ) ( B e. v /\ ( F " ( v i^i ( dom F \ { B } ) ) ) C_ u ) ) ) -> ( x e. CC /\ A. u e. ( TopOpen ` CCfld ) ( x e. u -> E. v e. ( TopOpen ` CCfld ) ( B e. v /\ ( ( F |` C ) " ( v i^i ( ( dom F i^i C ) \ { B } ) ) ) C_ u ) ) ) ) |
| 29 | 7 28 | syl | |- ( x e. ( F limCC B ) -> ( x e. CC /\ A. u e. ( TopOpen ` CCfld ) ( x e. u -> E. v e. ( TopOpen ` CCfld ) ( B e. v /\ ( ( F |` C ) " ( v i^i ( ( dom F i^i C ) \ { B } ) ) ) C_ u ) ) ) ) |
| 30 | fresin | |- ( F : dom F --> CC -> ( F |` C ) : ( dom F i^i C ) --> CC ) |
|
| 31 | 2 30 | syl | |- ( x e. ( F limCC B ) -> ( F |` C ) : ( dom F i^i C ) --> CC ) |
| 32 | 15 3 | sstrid | |- ( x e. ( F limCC B ) -> ( dom F i^i C ) C_ CC ) |
| 33 | 31 32 4 5 | ellimc2 | |- ( x e. ( F limCC B ) -> ( x e. ( ( F |` C ) limCC B ) <-> ( x e. CC /\ A. u e. ( TopOpen ` CCfld ) ( x e. u -> E. v e. ( TopOpen ` CCfld ) ( B e. v /\ ( ( F |` C ) " ( v i^i ( ( dom F i^i C ) \ { B } ) ) ) C_ u ) ) ) ) ) |
| 34 | 29 33 | mpbird | |- ( x e. ( F limCC B ) -> x e. ( ( F |` C ) limCC B ) ) |
| 35 | 34 | ssriv | |- ( F limCC B ) C_ ( ( F |` C ) limCC B ) |