This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A membership and equality inference. (Contributed by NM, 4-Jan-2006)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eqeltrrdi.1 | |- ( ph -> B = A ) |
|
| eqeltrrdi.2 | |- B e. C |
||
| Assertion | eqeltrrdi | |- ( ph -> A e. C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeltrrdi.1 | |- ( ph -> B = A ) |
|
| 2 | eqeltrrdi.2 | |- B e. C |
|
| 3 | 1 | eqcomd | |- ( ph -> A = B ) |
| 4 | 3 2 | eqeltrdi | |- ( ph -> A e. C ) |