This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The integral of a nonnegative real function is greater than or equal to zero. (Contributed by Mario Carneiro, 28-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | itg2ge0 | |- ( F : RR --> ( 0 [,] +oo ) -> 0 <_ ( S.2 ` F ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itg10 | |- ( S.1 ` ( RR X. { 0 } ) ) = 0 |
|
| 2 | ffvelcdm | |- ( ( F : RR --> ( 0 [,] +oo ) /\ y e. RR ) -> ( F ` y ) e. ( 0 [,] +oo ) ) |
|
| 3 | 0xr | |- 0 e. RR* |
|
| 4 | pnfxr | |- +oo e. RR* |
|
| 5 | elicc1 | |- ( ( 0 e. RR* /\ +oo e. RR* ) -> ( ( F ` y ) e. ( 0 [,] +oo ) <-> ( ( F ` y ) e. RR* /\ 0 <_ ( F ` y ) /\ ( F ` y ) <_ +oo ) ) ) |
|
| 6 | 3 4 5 | mp2an | |- ( ( F ` y ) e. ( 0 [,] +oo ) <-> ( ( F ` y ) e. RR* /\ 0 <_ ( F ` y ) /\ ( F ` y ) <_ +oo ) ) |
| 7 | 6 | simp2bi | |- ( ( F ` y ) e. ( 0 [,] +oo ) -> 0 <_ ( F ` y ) ) |
| 8 | 2 7 | syl | |- ( ( F : RR --> ( 0 [,] +oo ) /\ y e. RR ) -> 0 <_ ( F ` y ) ) |
| 9 | 8 | ralrimiva | |- ( F : RR --> ( 0 [,] +oo ) -> A. y e. RR 0 <_ ( F ` y ) ) |
| 10 | 0re | |- 0 e. RR |
|
| 11 | fnconstg | |- ( 0 e. RR -> ( RR X. { 0 } ) Fn RR ) |
|
| 12 | 10 11 | mp1i | |- ( F : RR --> ( 0 [,] +oo ) -> ( RR X. { 0 } ) Fn RR ) |
| 13 | ffn | |- ( F : RR --> ( 0 [,] +oo ) -> F Fn RR ) |
|
| 14 | reex | |- RR e. _V |
|
| 15 | 14 | a1i | |- ( F : RR --> ( 0 [,] +oo ) -> RR e. _V ) |
| 16 | inidm | |- ( RR i^i RR ) = RR |
|
| 17 | c0ex | |- 0 e. _V |
|
| 18 | 17 | fvconst2 | |- ( y e. RR -> ( ( RR X. { 0 } ) ` y ) = 0 ) |
| 19 | 18 | adantl | |- ( ( F : RR --> ( 0 [,] +oo ) /\ y e. RR ) -> ( ( RR X. { 0 } ) ` y ) = 0 ) |
| 20 | eqidd | |- ( ( F : RR --> ( 0 [,] +oo ) /\ y e. RR ) -> ( F ` y ) = ( F ` y ) ) |
|
| 21 | 12 13 15 15 16 19 20 | ofrfval | |- ( F : RR --> ( 0 [,] +oo ) -> ( ( RR X. { 0 } ) oR <_ F <-> A. y e. RR 0 <_ ( F ` y ) ) ) |
| 22 | 9 21 | mpbird | |- ( F : RR --> ( 0 [,] +oo ) -> ( RR X. { 0 } ) oR <_ F ) |
| 23 | i1f0 | |- ( RR X. { 0 } ) e. dom S.1 |
|
| 24 | itg2ub | |- ( ( F : RR --> ( 0 [,] +oo ) /\ ( RR X. { 0 } ) e. dom S.1 /\ ( RR X. { 0 } ) oR <_ F ) -> ( S.1 ` ( RR X. { 0 } ) ) <_ ( S.2 ` F ) ) |
|
| 25 | 23 24 | mp3an2 | |- ( ( F : RR --> ( 0 [,] +oo ) /\ ( RR X. { 0 } ) oR <_ F ) -> ( S.1 ` ( RR X. { 0 } ) ) <_ ( S.2 ` F ) ) |
| 26 | 22 25 | mpdan | |- ( F : RR --> ( 0 [,] +oo ) -> ( S.1 ` ( RR X. { 0 } ) ) <_ ( S.2 ` F ) ) |
| 27 | 1 26 | eqbrtrrid | |- ( F : RR --> ( 0 [,] +oo ) -> 0 <_ ( S.2 ` F ) ) |