This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: 'Less than or equal' expressed in terms of 'less than' or 'equals', for extended reals. (Contributed by NM, 19-Jan-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xrleloe | |- ( ( A e. RR* /\ B e. RR* ) -> ( A <_ B <-> ( A < B \/ A = B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrlenlt | |- ( ( A e. RR* /\ B e. RR* ) -> ( A <_ B <-> -. B < A ) ) |
|
| 2 | xrlttri | |- ( ( B e. RR* /\ A e. RR* ) -> ( B < A <-> -. ( B = A \/ A < B ) ) ) |
|
| 3 | 2 | ancoms | |- ( ( A e. RR* /\ B e. RR* ) -> ( B < A <-> -. ( B = A \/ A < B ) ) ) |
| 4 | 3 | con2bid | |- ( ( A e. RR* /\ B e. RR* ) -> ( ( B = A \/ A < B ) <-> -. B < A ) ) |
| 5 | eqcom | |- ( B = A <-> A = B ) |
|
| 6 | 5 | orbi1i | |- ( ( B = A \/ A < B ) <-> ( A = B \/ A < B ) ) |
| 7 | orcom | |- ( ( A = B \/ A < B ) <-> ( A < B \/ A = B ) ) |
|
| 8 | 6 7 | bitri | |- ( ( B = A \/ A < B ) <-> ( A < B \/ A = B ) ) |
| 9 | 4 8 | bitr3di | |- ( ( A e. RR* /\ B e. RR* ) -> ( -. B < A <-> ( A < B \/ A = B ) ) ) |
| 10 | 1 9 | bitrd | |- ( ( A e. RR* /\ B e. RR* ) -> ( A <_ B <-> ( A < B \/ A = B ) ) ) |