This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of a function given in maps-to notation. (Contributed by NM, 2-Oct-2007) (Revised by Mario Carneiro, 31-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fvmptg.1 | |- ( x = A -> B = C ) |
|
| fvmptg.2 | |- F = ( x e. D |-> B ) |
||
| Assertion | fvmptg | |- ( ( A e. D /\ C e. R ) -> ( F ` A ) = C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvmptg.1 | |- ( x = A -> B = C ) |
|
| 2 | fvmptg.2 | |- F = ( x e. D |-> B ) |
|
| 3 | eqid | |- C = C |
|
| 4 | 1 | eqeq2d | |- ( x = A -> ( y = B <-> y = C ) ) |
| 5 | eqeq1 | |- ( y = C -> ( y = C <-> C = C ) ) |
|
| 6 | moeq | |- E* y y = B |
|
| 7 | 6 | a1i | |- ( x e. D -> E* y y = B ) |
| 8 | df-mpt | |- ( x e. D |-> B ) = { <. x , y >. | ( x e. D /\ y = B ) } |
|
| 9 | 2 8 | eqtri | |- F = { <. x , y >. | ( x e. D /\ y = B ) } |
| 10 | 4 5 7 9 | fvopab3ig | |- ( ( A e. D /\ C e. R ) -> ( C = C -> ( F ` A ) = C ) ) |
| 11 | 3 10 | mpi | |- ( ( A e. D /\ C e. R ) -> ( F ` A ) = C ) |