This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: "Less than or equal to" expressed in terms of "less than", for extended reals. (Contributed by NM, 14-Oct-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xrlenlt | |- ( ( A e. RR* /\ B e. RR* ) -> ( A <_ B <-> -. B < A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-br | |- ( A <_ B <-> <. A , B >. e. <_ ) |
|
| 2 | opelxpi | |- ( ( A e. RR* /\ B e. RR* ) -> <. A , B >. e. ( RR* X. RR* ) ) |
|
| 3 | df-le | |- <_ = ( ( RR* X. RR* ) \ `' < ) |
|
| 4 | 3 | eleq2i | |- ( <. A , B >. e. <_ <-> <. A , B >. e. ( ( RR* X. RR* ) \ `' < ) ) |
| 5 | eldif | |- ( <. A , B >. e. ( ( RR* X. RR* ) \ `' < ) <-> ( <. A , B >. e. ( RR* X. RR* ) /\ -. <. A , B >. e. `' < ) ) |
|
| 6 | 4 5 | bitri | |- ( <. A , B >. e. <_ <-> ( <. A , B >. e. ( RR* X. RR* ) /\ -. <. A , B >. e. `' < ) ) |
| 7 | 6 | baib | |- ( <. A , B >. e. ( RR* X. RR* ) -> ( <. A , B >. e. <_ <-> -. <. A , B >. e. `' < ) ) |
| 8 | 2 7 | syl | |- ( ( A e. RR* /\ B e. RR* ) -> ( <. A , B >. e. <_ <-> -. <. A , B >. e. `' < ) ) |
| 9 | 1 8 | bitrid | |- ( ( A e. RR* /\ B e. RR* ) -> ( A <_ B <-> -. <. A , B >. e. `' < ) ) |
| 10 | df-br | |- ( B < A <-> <. B , A >. e. < ) |
|
| 11 | opelcnvg | |- ( ( A e. RR* /\ B e. RR* ) -> ( <. A , B >. e. `' < <-> <. B , A >. e. < ) ) |
|
| 12 | 10 11 | bitr4id | |- ( ( A e. RR* /\ B e. RR* ) -> ( B < A <-> <. A , B >. e. `' < ) ) |
| 13 | 12 | notbid | |- ( ( A e. RR* /\ B e. RR* ) -> ( -. B < A <-> -. <. A , B >. e. `' < ) ) |
| 14 | 9 13 | bitr4d | |- ( ( A e. RR* /\ B e. RR* ) -> ( A <_ B <-> -. B < A ) ) |