This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Elementhood in the set of nonnegative extended reals. (Contributed by Mario Carneiro, 28-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elxrge0 | |- ( A e. ( 0 [,] +oo ) <-> ( A e. RR* /\ 0 <_ A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3an | |- ( ( A e. RR* /\ 0 <_ A /\ A <_ +oo ) <-> ( ( A e. RR* /\ 0 <_ A ) /\ A <_ +oo ) ) |
|
| 2 | 0xr | |- 0 e. RR* |
|
| 3 | pnfxr | |- +oo e. RR* |
|
| 4 | elicc1 | |- ( ( 0 e. RR* /\ +oo e. RR* ) -> ( A e. ( 0 [,] +oo ) <-> ( A e. RR* /\ 0 <_ A /\ A <_ +oo ) ) ) |
|
| 5 | 2 3 4 | mp2an | |- ( A e. ( 0 [,] +oo ) <-> ( A e. RR* /\ 0 <_ A /\ A <_ +oo ) ) |
| 6 | pnfge | |- ( A e. RR* -> A <_ +oo ) |
|
| 7 | 6 | adantr | |- ( ( A e. RR* /\ 0 <_ A ) -> A <_ +oo ) |
| 8 | 7 | pm4.71i | |- ( ( A e. RR* /\ 0 <_ A ) <-> ( ( A e. RR* /\ 0 <_ A ) /\ A <_ +oo ) ) |
| 9 | 1 5 8 | 3bitr4i | |- ( A e. ( 0 [,] +oo ) <-> ( A e. RR* /\ 0 <_ A ) ) |