This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The reciprocal of a positive integer is positive. (Contributed by NM, 25-Aug-1999)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nnrecgt0 | |- ( A e. NN -> 0 < ( 1 / A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnge1 | |- ( A e. NN -> 1 <_ A ) |
|
| 2 | 0lt1 | |- 0 < 1 |
|
| 3 | nnre | |- ( A e. NN -> A e. RR ) |
|
| 4 | 0re | |- 0 e. RR |
|
| 5 | 1re | |- 1 e. RR |
|
| 6 | ltletr | |- ( ( 0 e. RR /\ 1 e. RR /\ A e. RR ) -> ( ( 0 < 1 /\ 1 <_ A ) -> 0 < A ) ) |
|
| 7 | 4 5 6 | mp3an12 | |- ( A e. RR -> ( ( 0 < 1 /\ 1 <_ A ) -> 0 < A ) ) |
| 8 | recgt0 | |- ( ( A e. RR /\ 0 < A ) -> 0 < ( 1 / A ) ) |
|
| 9 | 8 | ex | |- ( A e. RR -> ( 0 < A -> 0 < ( 1 / A ) ) ) |
| 10 | 7 9 | syld | |- ( A e. RR -> ( ( 0 < 1 /\ 1 <_ A ) -> 0 < ( 1 / A ) ) ) |
| 11 | 3 10 | syl | |- ( A e. NN -> ( ( 0 < 1 /\ 1 <_ A ) -> 0 < ( 1 / A ) ) ) |
| 12 | 2 11 | mpani | |- ( A e. NN -> ( 1 <_ A -> 0 < ( 1 / A ) ) ) |
| 13 | 1 12 | mpd | |- ( A e. NN -> 0 < ( 1 / A ) ) |