This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: There exists a positive integer whose reciprocal is less than a given positive real. Exercise 3 of Apostol p. 28. (Contributed by NM, 8-Nov-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nnrecl | |- ( ( A e. RR /\ 0 < A ) -> E. n e. NN ( 1 / n ) < A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | |- ( ( A e. RR /\ 0 < A ) -> A e. RR ) |
|
| 2 | gt0ne0 | |- ( ( A e. RR /\ 0 < A ) -> A =/= 0 ) |
|
| 3 | 1 2 | rereccld | |- ( ( A e. RR /\ 0 < A ) -> ( 1 / A ) e. RR ) |
| 4 | arch | |- ( ( 1 / A ) e. RR -> E. n e. NN ( 1 / A ) < n ) |
|
| 5 | 3 4 | syl | |- ( ( A e. RR /\ 0 < A ) -> E. n e. NN ( 1 / A ) < n ) |
| 6 | recgt0 | |- ( ( A e. RR /\ 0 < A ) -> 0 < ( 1 / A ) ) |
|
| 7 | 3 6 | jca | |- ( ( A e. RR /\ 0 < A ) -> ( ( 1 / A ) e. RR /\ 0 < ( 1 / A ) ) ) |
| 8 | nnre | |- ( n e. NN -> n e. RR ) |
|
| 9 | nngt0 | |- ( n e. NN -> 0 < n ) |
|
| 10 | 8 9 | jca | |- ( n e. NN -> ( n e. RR /\ 0 < n ) ) |
| 11 | ltrec | |- ( ( ( ( 1 / A ) e. RR /\ 0 < ( 1 / A ) ) /\ ( n e. RR /\ 0 < n ) ) -> ( ( 1 / A ) < n <-> ( 1 / n ) < ( 1 / ( 1 / A ) ) ) ) |
|
| 12 | 7 10 11 | syl2an | |- ( ( ( A e. RR /\ 0 < A ) /\ n e. NN ) -> ( ( 1 / A ) < n <-> ( 1 / n ) < ( 1 / ( 1 / A ) ) ) ) |
| 13 | recn | |- ( A e. RR -> A e. CC ) |
|
| 14 | 13 | adantr | |- ( ( A e. RR /\ 0 < A ) -> A e. CC ) |
| 15 | 14 2 | recrecd | |- ( ( A e. RR /\ 0 < A ) -> ( 1 / ( 1 / A ) ) = A ) |
| 16 | 15 | breq2d | |- ( ( A e. RR /\ 0 < A ) -> ( ( 1 / n ) < ( 1 / ( 1 / A ) ) <-> ( 1 / n ) < A ) ) |
| 17 | 16 | adantr | |- ( ( ( A e. RR /\ 0 < A ) /\ n e. NN ) -> ( ( 1 / n ) < ( 1 / ( 1 / A ) ) <-> ( 1 / n ) < A ) ) |
| 18 | 12 17 | bitrd | |- ( ( ( A e. RR /\ 0 < A ) /\ n e. NN ) -> ( ( 1 / A ) < n <-> ( 1 / n ) < A ) ) |
| 19 | 18 | rexbidva | |- ( ( A e. RR /\ 0 < A ) -> ( E. n e. NN ( 1 / A ) < n <-> E. n e. NN ( 1 / n ) < A ) ) |
| 20 | 5 19 | mpbid | |- ( ( A e. RR /\ 0 < A ) -> E. n e. NN ( 1 / n ) < A ) |