This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Integral of a constant function. (Contributed by Mario Carneiro, 12-Aug-2014) (Revised by Mario Carneiro, 23-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | itg2const | |- ( ( A e. dom vol /\ ( vol ` A ) e. RR /\ B e. ( 0 [,) +oo ) ) -> ( S.2 ` ( x e. RR |-> if ( x e. A , B , 0 ) ) ) = ( B x. ( vol ` A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reex | |- RR e. _V |
|
| 2 | 1 | a1i | |- ( ( A e. dom vol /\ ( vol ` A ) e. RR /\ B e. ( 0 [,) +oo ) ) -> RR e. _V ) |
| 3 | simpl3 | |- ( ( ( A e. dom vol /\ ( vol ` A ) e. RR /\ B e. ( 0 [,) +oo ) ) /\ x e. RR ) -> B e. ( 0 [,) +oo ) ) |
|
| 4 | 1re | |- 1 e. RR |
|
| 5 | 0re | |- 0 e. RR |
|
| 6 | 4 5 | ifcli | |- if ( x e. A , 1 , 0 ) e. RR |
| 7 | 6 | a1i | |- ( ( ( A e. dom vol /\ ( vol ` A ) e. RR /\ B e. ( 0 [,) +oo ) ) /\ x e. RR ) -> if ( x e. A , 1 , 0 ) e. RR ) |
| 8 | fconstmpt | |- ( RR X. { B } ) = ( x e. RR |-> B ) |
|
| 9 | 8 | a1i | |- ( ( A e. dom vol /\ ( vol ` A ) e. RR /\ B e. ( 0 [,) +oo ) ) -> ( RR X. { B } ) = ( x e. RR |-> B ) ) |
| 10 | eqidd | |- ( ( A e. dom vol /\ ( vol ` A ) e. RR /\ B e. ( 0 [,) +oo ) ) -> ( x e. RR |-> if ( x e. A , 1 , 0 ) ) = ( x e. RR |-> if ( x e. A , 1 , 0 ) ) ) |
|
| 11 | 2 3 7 9 10 | offval2 | |- ( ( A e. dom vol /\ ( vol ` A ) e. RR /\ B e. ( 0 [,) +oo ) ) -> ( ( RR X. { B } ) oF x. ( x e. RR |-> if ( x e. A , 1 , 0 ) ) ) = ( x e. RR |-> ( B x. if ( x e. A , 1 , 0 ) ) ) ) |
| 12 | ovif2 | |- ( B x. if ( x e. A , 1 , 0 ) ) = if ( x e. A , ( B x. 1 ) , ( B x. 0 ) ) |
|
| 13 | simp3 | |- ( ( A e. dom vol /\ ( vol ` A ) e. RR /\ B e. ( 0 [,) +oo ) ) -> B e. ( 0 [,) +oo ) ) |
|
| 14 | elrege0 | |- ( B e. ( 0 [,) +oo ) <-> ( B e. RR /\ 0 <_ B ) ) |
|
| 15 | 13 14 | sylib | |- ( ( A e. dom vol /\ ( vol ` A ) e. RR /\ B e. ( 0 [,) +oo ) ) -> ( B e. RR /\ 0 <_ B ) ) |
| 16 | 15 | simpld | |- ( ( A e. dom vol /\ ( vol ` A ) e. RR /\ B e. ( 0 [,) +oo ) ) -> B e. RR ) |
| 17 | 16 | recnd | |- ( ( A e. dom vol /\ ( vol ` A ) e. RR /\ B e. ( 0 [,) +oo ) ) -> B e. CC ) |
| 18 | 17 | mulridd | |- ( ( A e. dom vol /\ ( vol ` A ) e. RR /\ B e. ( 0 [,) +oo ) ) -> ( B x. 1 ) = B ) |
| 19 | 17 | mul01d | |- ( ( A e. dom vol /\ ( vol ` A ) e. RR /\ B e. ( 0 [,) +oo ) ) -> ( B x. 0 ) = 0 ) |
| 20 | 18 19 | ifeq12d | |- ( ( A e. dom vol /\ ( vol ` A ) e. RR /\ B e. ( 0 [,) +oo ) ) -> if ( x e. A , ( B x. 1 ) , ( B x. 0 ) ) = if ( x e. A , B , 0 ) ) |
| 21 | 12 20 | eqtrid | |- ( ( A e. dom vol /\ ( vol ` A ) e. RR /\ B e. ( 0 [,) +oo ) ) -> ( B x. if ( x e. A , 1 , 0 ) ) = if ( x e. A , B , 0 ) ) |
| 22 | 21 | mpteq2dv | |- ( ( A e. dom vol /\ ( vol ` A ) e. RR /\ B e. ( 0 [,) +oo ) ) -> ( x e. RR |-> ( B x. if ( x e. A , 1 , 0 ) ) ) = ( x e. RR |-> if ( x e. A , B , 0 ) ) ) |
| 23 | 11 22 | eqtrd | |- ( ( A e. dom vol /\ ( vol ` A ) e. RR /\ B e. ( 0 [,) +oo ) ) -> ( ( RR X. { B } ) oF x. ( x e. RR |-> if ( x e. A , 1 , 0 ) ) ) = ( x e. RR |-> if ( x e. A , B , 0 ) ) ) |
| 24 | eqid | |- ( x e. RR |-> if ( x e. A , 1 , 0 ) ) = ( x e. RR |-> if ( x e. A , 1 , 0 ) ) |
|
| 25 | 24 | i1f1 | |- ( ( A e. dom vol /\ ( vol ` A ) e. RR ) -> ( x e. RR |-> if ( x e. A , 1 , 0 ) ) e. dom S.1 ) |
| 26 | 25 | 3adant3 | |- ( ( A e. dom vol /\ ( vol ` A ) e. RR /\ B e. ( 0 [,) +oo ) ) -> ( x e. RR |-> if ( x e. A , 1 , 0 ) ) e. dom S.1 ) |
| 27 | 26 16 | i1fmulc | |- ( ( A e. dom vol /\ ( vol ` A ) e. RR /\ B e. ( 0 [,) +oo ) ) -> ( ( RR X. { B } ) oF x. ( x e. RR |-> if ( x e. A , 1 , 0 ) ) ) e. dom S.1 ) |
| 28 | 23 27 | eqeltrrd | |- ( ( A e. dom vol /\ ( vol ` A ) e. RR /\ B e. ( 0 [,) +oo ) ) -> ( x e. RR |-> if ( x e. A , B , 0 ) ) e. dom S.1 ) |
| 29 | 15 | simprd | |- ( ( A e. dom vol /\ ( vol ` A ) e. RR /\ B e. ( 0 [,) +oo ) ) -> 0 <_ B ) |
| 30 | 0le0 | |- 0 <_ 0 |
|
| 31 | breq2 | |- ( B = if ( x e. A , B , 0 ) -> ( 0 <_ B <-> 0 <_ if ( x e. A , B , 0 ) ) ) |
|
| 32 | breq2 | |- ( 0 = if ( x e. A , B , 0 ) -> ( 0 <_ 0 <-> 0 <_ if ( x e. A , B , 0 ) ) ) |
|
| 33 | 31 32 | ifboth | |- ( ( 0 <_ B /\ 0 <_ 0 ) -> 0 <_ if ( x e. A , B , 0 ) ) |
| 34 | 29 30 33 | sylancl | |- ( ( A e. dom vol /\ ( vol ` A ) e. RR /\ B e. ( 0 [,) +oo ) ) -> 0 <_ if ( x e. A , B , 0 ) ) |
| 35 | 34 | ralrimivw | |- ( ( A e. dom vol /\ ( vol ` A ) e. RR /\ B e. ( 0 [,) +oo ) ) -> A. x e. RR 0 <_ if ( x e. A , B , 0 ) ) |
| 36 | ax-resscn | |- RR C_ CC |
|
| 37 | 36 | a1i | |- ( ( A e. dom vol /\ ( vol ` A ) e. RR /\ B e. ( 0 [,) +oo ) ) -> RR C_ CC ) |
| 38 | 16 | adantr | |- ( ( ( A e. dom vol /\ ( vol ` A ) e. RR /\ B e. ( 0 [,) +oo ) ) /\ x e. RR ) -> B e. RR ) |
| 39 | ifcl | |- ( ( B e. RR /\ 0 e. RR ) -> if ( x e. A , B , 0 ) e. RR ) |
|
| 40 | 38 5 39 | sylancl | |- ( ( ( A e. dom vol /\ ( vol ` A ) e. RR /\ B e. ( 0 [,) +oo ) ) /\ x e. RR ) -> if ( x e. A , B , 0 ) e. RR ) |
| 41 | 40 | ralrimiva | |- ( ( A e. dom vol /\ ( vol ` A ) e. RR /\ B e. ( 0 [,) +oo ) ) -> A. x e. RR if ( x e. A , B , 0 ) e. RR ) |
| 42 | eqid | |- ( x e. RR |-> if ( x e. A , B , 0 ) ) = ( x e. RR |-> if ( x e. A , B , 0 ) ) |
|
| 43 | 42 | fnmpt | |- ( A. x e. RR if ( x e. A , B , 0 ) e. RR -> ( x e. RR |-> if ( x e. A , B , 0 ) ) Fn RR ) |
| 44 | 41 43 | syl | |- ( ( A e. dom vol /\ ( vol ` A ) e. RR /\ B e. ( 0 [,) +oo ) ) -> ( x e. RR |-> if ( x e. A , B , 0 ) ) Fn RR ) |
| 45 | 37 44 | 0pledm | |- ( ( A e. dom vol /\ ( vol ` A ) e. RR /\ B e. ( 0 [,) +oo ) ) -> ( 0p oR <_ ( x e. RR |-> if ( x e. A , B , 0 ) ) <-> ( RR X. { 0 } ) oR <_ ( x e. RR |-> if ( x e. A , B , 0 ) ) ) ) |
| 46 | 5 | a1i | |- ( ( ( A e. dom vol /\ ( vol ` A ) e. RR /\ B e. ( 0 [,) +oo ) ) /\ x e. RR ) -> 0 e. RR ) |
| 47 | fconstmpt | |- ( RR X. { 0 } ) = ( x e. RR |-> 0 ) |
|
| 48 | 47 | a1i | |- ( ( A e. dom vol /\ ( vol ` A ) e. RR /\ B e. ( 0 [,) +oo ) ) -> ( RR X. { 0 } ) = ( x e. RR |-> 0 ) ) |
| 49 | eqidd | |- ( ( A e. dom vol /\ ( vol ` A ) e. RR /\ B e. ( 0 [,) +oo ) ) -> ( x e. RR |-> if ( x e. A , B , 0 ) ) = ( x e. RR |-> if ( x e. A , B , 0 ) ) ) |
|
| 50 | 2 46 40 48 49 | ofrfval2 | |- ( ( A e. dom vol /\ ( vol ` A ) e. RR /\ B e. ( 0 [,) +oo ) ) -> ( ( RR X. { 0 } ) oR <_ ( x e. RR |-> if ( x e. A , B , 0 ) ) <-> A. x e. RR 0 <_ if ( x e. A , B , 0 ) ) ) |
| 51 | 45 50 | bitrd | |- ( ( A e. dom vol /\ ( vol ` A ) e. RR /\ B e. ( 0 [,) +oo ) ) -> ( 0p oR <_ ( x e. RR |-> if ( x e. A , B , 0 ) ) <-> A. x e. RR 0 <_ if ( x e. A , B , 0 ) ) ) |
| 52 | 35 51 | mpbird | |- ( ( A e. dom vol /\ ( vol ` A ) e. RR /\ B e. ( 0 [,) +oo ) ) -> 0p oR <_ ( x e. RR |-> if ( x e. A , B , 0 ) ) ) |
| 53 | itg2itg1 | |- ( ( ( x e. RR |-> if ( x e. A , B , 0 ) ) e. dom S.1 /\ 0p oR <_ ( x e. RR |-> if ( x e. A , B , 0 ) ) ) -> ( S.2 ` ( x e. RR |-> if ( x e. A , B , 0 ) ) ) = ( S.1 ` ( x e. RR |-> if ( x e. A , B , 0 ) ) ) ) |
|
| 54 | 28 52 53 | syl2anc | |- ( ( A e. dom vol /\ ( vol ` A ) e. RR /\ B e. ( 0 [,) +oo ) ) -> ( S.2 ` ( x e. RR |-> if ( x e. A , B , 0 ) ) ) = ( S.1 ` ( x e. RR |-> if ( x e. A , B , 0 ) ) ) ) |
| 55 | 26 16 | itg1mulc | |- ( ( A e. dom vol /\ ( vol ` A ) e. RR /\ B e. ( 0 [,) +oo ) ) -> ( S.1 ` ( ( RR X. { B } ) oF x. ( x e. RR |-> if ( x e. A , 1 , 0 ) ) ) ) = ( B x. ( S.1 ` ( x e. RR |-> if ( x e. A , 1 , 0 ) ) ) ) ) |
| 56 | 23 | fveq2d | |- ( ( A e. dom vol /\ ( vol ` A ) e. RR /\ B e. ( 0 [,) +oo ) ) -> ( S.1 ` ( ( RR X. { B } ) oF x. ( x e. RR |-> if ( x e. A , 1 , 0 ) ) ) ) = ( S.1 ` ( x e. RR |-> if ( x e. A , B , 0 ) ) ) ) |
| 57 | 24 | itg11 | |- ( ( A e. dom vol /\ ( vol ` A ) e. RR ) -> ( S.1 ` ( x e. RR |-> if ( x e. A , 1 , 0 ) ) ) = ( vol ` A ) ) |
| 58 | 57 | 3adant3 | |- ( ( A e. dom vol /\ ( vol ` A ) e. RR /\ B e. ( 0 [,) +oo ) ) -> ( S.1 ` ( x e. RR |-> if ( x e. A , 1 , 0 ) ) ) = ( vol ` A ) ) |
| 59 | 58 | oveq2d | |- ( ( A e. dom vol /\ ( vol ` A ) e. RR /\ B e. ( 0 [,) +oo ) ) -> ( B x. ( S.1 ` ( x e. RR |-> if ( x e. A , 1 , 0 ) ) ) ) = ( B x. ( vol ` A ) ) ) |
| 60 | 55 56 59 | 3eqtr3d | |- ( ( A e. dom vol /\ ( vol ` A ) e. RR /\ B e. ( 0 [,) +oo ) ) -> ( S.1 ` ( x e. RR |-> if ( x e. A , B , 0 ) ) ) = ( B x. ( vol ` A ) ) ) |
| 61 | 54 60 | eqtrd | |- ( ( A e. dom vol /\ ( vol ` A ) e. RR /\ B e. ( 0 [,) +oo ) ) -> ( S.2 ` ( x e. RR |-> if ( x e. A , B , 0 ) ) ) = ( B x. ( vol ` A ) ) ) |