This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in an unbounded interval of extended reals. (Contributed by Mario Carneiro, 18-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elioopnf | |- ( A e. RR* -> ( B e. ( A (,) +oo ) <-> ( B e. RR /\ A < B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pnfxr | |- +oo e. RR* |
|
| 2 | elioo2 | |- ( ( A e. RR* /\ +oo e. RR* ) -> ( B e. ( A (,) +oo ) <-> ( B e. RR /\ A < B /\ B < +oo ) ) ) |
|
| 3 | 1 2 | mpan2 | |- ( A e. RR* -> ( B e. ( A (,) +oo ) <-> ( B e. RR /\ A < B /\ B < +oo ) ) ) |
| 4 | df-3an | |- ( ( B e. RR /\ A < B /\ B < +oo ) <-> ( ( B e. RR /\ A < B ) /\ B < +oo ) ) |
|
| 5 | ltpnf | |- ( B e. RR -> B < +oo ) |
|
| 6 | 5 | adantr | |- ( ( B e. RR /\ A < B ) -> B < +oo ) |
| 7 | 6 | pm4.71i | |- ( ( B e. RR /\ A < B ) <-> ( ( B e. RR /\ A < B ) /\ B < +oo ) ) |
| 8 | 4 7 | bitr4i | |- ( ( B e. RR /\ A < B /\ B < +oo ) <-> ( B e. RR /\ A < B ) ) |
| 9 | 3 8 | bitrdi | |- ( A e. RR* -> ( B e. ( A (,) +oo ) <-> ( B e. RR /\ A < B ) ) ) |