This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The converse of a set is a set. Corollary 6.8(1) of TakeutiZaring p. 26. (Contributed by NM, 17-Mar-1998)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnvexg | |- ( A e. V -> `' A e. _V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relcnv | |- Rel `' A |
|
| 2 | relssdmrn | |- ( Rel `' A -> `' A C_ ( dom `' A X. ran `' A ) ) |
|
| 3 | 1 2 | ax-mp | |- `' A C_ ( dom `' A X. ran `' A ) |
| 4 | df-rn | |- ran A = dom `' A |
|
| 5 | rnexg | |- ( A e. V -> ran A e. _V ) |
|
| 6 | 4 5 | eqeltrrid | |- ( A e. V -> dom `' A e. _V ) |
| 7 | dfdm4 | |- dom A = ran `' A |
|
| 8 | dmexg | |- ( A e. V -> dom A e. _V ) |
|
| 9 | 7 8 | eqeltrrid | |- ( A e. V -> ran `' A e. _V ) |
| 10 | 6 9 | xpexd | |- ( A e. V -> ( dom `' A X. ran `' A ) e. _V ) |
| 11 | ssexg | |- ( ( `' A C_ ( dom `' A X. ran `' A ) /\ ( dom `' A X. ran `' A ) e. _V ) -> `' A e. _V ) |
|
| 12 | 3 10 11 | sylancr | |- ( A e. V -> `' A e. _V ) |