This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The span of the transpositions is the subgroup that moves finitely many points. (Contributed by Stefan O'Rear, 28-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | symgtrf.t | ⊢ 𝑇 = ran ( pmTrsp ‘ 𝐷 ) | |
| symgtrf.g | ⊢ 𝐺 = ( SymGrp ‘ 𝐷 ) | ||
| symgtrf.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | ||
| symggen.k | ⊢ 𝐾 = ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) | ||
| Assertion | symggen | ⊢ ( 𝐷 ∈ 𝑉 → ( 𝐾 ‘ 𝑇 ) = { 𝑥 ∈ 𝐵 ∣ dom ( 𝑥 ∖ I ) ∈ Fin } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | symgtrf.t | ⊢ 𝑇 = ran ( pmTrsp ‘ 𝐷 ) | |
| 2 | symgtrf.g | ⊢ 𝐺 = ( SymGrp ‘ 𝐷 ) | |
| 3 | symgtrf.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 4 | symggen.k | ⊢ 𝐾 = ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) | |
| 5 | elex | ⊢ ( 𝐷 ∈ 𝑉 → 𝐷 ∈ V ) | |
| 6 | 2 | symggrp | ⊢ ( 𝐷 ∈ V → 𝐺 ∈ Grp ) |
| 7 | 6 | grpmndd | ⊢ ( 𝐷 ∈ V → 𝐺 ∈ Mnd ) |
| 8 | 3 | submacs | ⊢ ( 𝐺 ∈ Mnd → ( SubMnd ‘ 𝐺 ) ∈ ( ACS ‘ 𝐵 ) ) |
| 9 | acsmre | ⊢ ( ( SubMnd ‘ 𝐺 ) ∈ ( ACS ‘ 𝐵 ) → ( SubMnd ‘ 𝐺 ) ∈ ( Moore ‘ 𝐵 ) ) | |
| 10 | 7 8 9 | 3syl | ⊢ ( 𝐷 ∈ V → ( SubMnd ‘ 𝐺 ) ∈ ( Moore ‘ 𝐵 ) ) |
| 11 | 5 10 | syl | ⊢ ( 𝐷 ∈ 𝑉 → ( SubMnd ‘ 𝐺 ) ∈ ( Moore ‘ 𝐵 ) ) |
| 12 | 1 2 3 | symgtrf | ⊢ 𝑇 ⊆ 𝐵 |
| 13 | 12 | a1i | ⊢ ( 𝐷 ∈ 𝑉 → 𝑇 ⊆ 𝐵 ) |
| 14 | 2onn | ⊢ 2o ∈ ω | |
| 15 | nnfi | ⊢ ( 2o ∈ ω → 2o ∈ Fin ) | |
| 16 | 14 15 | ax-mp | ⊢ 2o ∈ Fin |
| 17 | eqid | ⊢ ( pmTrsp ‘ 𝐷 ) = ( pmTrsp ‘ 𝐷 ) | |
| 18 | 17 1 | pmtrfb | ⊢ ( 𝑥 ∈ 𝑇 ↔ ( 𝐷 ∈ V ∧ 𝑥 : 𝐷 –1-1-onto→ 𝐷 ∧ dom ( 𝑥 ∖ I ) ≈ 2o ) ) |
| 19 | 18 | simp3bi | ⊢ ( 𝑥 ∈ 𝑇 → dom ( 𝑥 ∖ I ) ≈ 2o ) |
| 20 | enfi | ⊢ ( dom ( 𝑥 ∖ I ) ≈ 2o → ( dom ( 𝑥 ∖ I ) ∈ Fin ↔ 2o ∈ Fin ) ) | |
| 21 | 19 20 | syl | ⊢ ( 𝑥 ∈ 𝑇 → ( dom ( 𝑥 ∖ I ) ∈ Fin ↔ 2o ∈ Fin ) ) |
| 22 | 21 | adantl | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑥 ∈ 𝑇 ) → ( dom ( 𝑥 ∖ I ) ∈ Fin ↔ 2o ∈ Fin ) ) |
| 23 | 16 22 | mpbiri | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑥 ∈ 𝑇 ) → dom ( 𝑥 ∖ I ) ∈ Fin ) |
| 24 | 13 23 | ssrabdv | ⊢ ( 𝐷 ∈ 𝑉 → 𝑇 ⊆ { 𝑥 ∈ 𝐵 ∣ dom ( 𝑥 ∖ I ) ∈ Fin } ) |
| 25 | 2 3 | symgfisg | ⊢ ( 𝐷 ∈ 𝑉 → { 𝑥 ∈ 𝐵 ∣ dom ( 𝑥 ∖ I ) ∈ Fin } ∈ ( SubGrp ‘ 𝐺 ) ) |
| 26 | subgsubm | ⊢ ( { 𝑥 ∈ 𝐵 ∣ dom ( 𝑥 ∖ I ) ∈ Fin } ∈ ( SubGrp ‘ 𝐺 ) → { 𝑥 ∈ 𝐵 ∣ dom ( 𝑥 ∖ I ) ∈ Fin } ∈ ( SubMnd ‘ 𝐺 ) ) | |
| 27 | 25 26 | syl | ⊢ ( 𝐷 ∈ 𝑉 → { 𝑥 ∈ 𝐵 ∣ dom ( 𝑥 ∖ I ) ∈ Fin } ∈ ( SubMnd ‘ 𝐺 ) ) |
| 28 | 4 | mrcsscl | ⊢ ( ( ( SubMnd ‘ 𝐺 ) ∈ ( Moore ‘ 𝐵 ) ∧ 𝑇 ⊆ { 𝑥 ∈ 𝐵 ∣ dom ( 𝑥 ∖ I ) ∈ Fin } ∧ { 𝑥 ∈ 𝐵 ∣ dom ( 𝑥 ∖ I ) ∈ Fin } ∈ ( SubMnd ‘ 𝐺 ) ) → ( 𝐾 ‘ 𝑇 ) ⊆ { 𝑥 ∈ 𝐵 ∣ dom ( 𝑥 ∖ I ) ∈ Fin } ) |
| 29 | 11 24 27 28 | syl3anc | ⊢ ( 𝐷 ∈ 𝑉 → ( 𝐾 ‘ 𝑇 ) ⊆ { 𝑥 ∈ 𝐵 ∣ dom ( 𝑥 ∖ I ) ∈ Fin } ) |
| 30 | vex | ⊢ 𝑥 ∈ V | |
| 31 | 30 | a1i | ⊢ ( dom ( 𝑥 ∖ I ) ∈ Fin → 𝑥 ∈ V ) |
| 32 | finnum | ⊢ ( dom ( 𝑥 ∖ I ) ∈ Fin → dom ( 𝑥 ∖ I ) ∈ dom card ) | |
| 33 | domfi | ⊢ ( ( dom ( 𝑥 ∖ I ) ∈ Fin ∧ dom ( 𝑦 ∖ I ) ≼ dom ( 𝑥 ∖ I ) ) → dom ( 𝑦 ∖ I ) ∈ Fin ) | |
| 34 | 2 3 | symgbasf1o | ⊢ ( 𝑦 ∈ 𝐵 → 𝑦 : 𝐷 –1-1-onto→ 𝐷 ) |
| 35 | 34 | adantl | ⊢ ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) → 𝑦 : 𝐷 –1-1-onto→ 𝐷 ) |
| 36 | f1ofn | ⊢ ( 𝑦 : 𝐷 –1-1-onto→ 𝐷 → 𝑦 Fn 𝐷 ) | |
| 37 | fnnfpeq0 | ⊢ ( 𝑦 Fn 𝐷 → ( dom ( 𝑦 ∖ I ) = ∅ ↔ 𝑦 = ( I ↾ 𝐷 ) ) ) | |
| 38 | 35 36 37 | 3syl | ⊢ ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) → ( dom ( 𝑦 ∖ I ) = ∅ ↔ 𝑦 = ( I ↾ 𝐷 ) ) ) |
| 39 | 2 3 | elbasfv | ⊢ ( 𝑦 ∈ 𝐵 → 𝐷 ∈ V ) |
| 40 | 39 | adantl | ⊢ ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) → 𝐷 ∈ V ) |
| 41 | 2 | symgid | ⊢ ( 𝐷 ∈ V → ( I ↾ 𝐷 ) = ( 0g ‘ 𝐺 ) ) |
| 42 | 40 41 | syl | ⊢ ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) → ( I ↾ 𝐷 ) = ( 0g ‘ 𝐺 ) ) |
| 43 | 40 10 | syl | ⊢ ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) → ( SubMnd ‘ 𝐺 ) ∈ ( Moore ‘ 𝐵 ) ) |
| 44 | 4 | mrccl | ⊢ ( ( ( SubMnd ‘ 𝐺 ) ∈ ( Moore ‘ 𝐵 ) ∧ 𝑇 ⊆ 𝐵 ) → ( 𝐾 ‘ 𝑇 ) ∈ ( SubMnd ‘ 𝐺 ) ) |
| 45 | 43 12 44 | sylancl | ⊢ ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) → ( 𝐾 ‘ 𝑇 ) ∈ ( SubMnd ‘ 𝐺 ) ) |
| 46 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 47 | 46 | subm0cl | ⊢ ( ( 𝐾 ‘ 𝑇 ) ∈ ( SubMnd ‘ 𝐺 ) → ( 0g ‘ 𝐺 ) ∈ ( 𝐾 ‘ 𝑇 ) ) |
| 48 | 45 47 | syl | ⊢ ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) → ( 0g ‘ 𝐺 ) ∈ ( 𝐾 ‘ 𝑇 ) ) |
| 49 | 42 48 | eqeltrd | ⊢ ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) → ( I ↾ 𝐷 ) ∈ ( 𝐾 ‘ 𝑇 ) ) |
| 50 | eleq1a | ⊢ ( ( I ↾ 𝐷 ) ∈ ( 𝐾 ‘ 𝑇 ) → ( 𝑦 = ( I ↾ 𝐷 ) → 𝑦 ∈ ( 𝐾 ‘ 𝑇 ) ) ) | |
| 51 | 49 50 | syl | ⊢ ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) → ( 𝑦 = ( I ↾ 𝐷 ) → 𝑦 ∈ ( 𝐾 ‘ 𝑇 ) ) ) |
| 52 | 38 51 | sylbid | ⊢ ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) → ( dom ( 𝑦 ∖ I ) = ∅ → 𝑦 ∈ ( 𝐾 ‘ 𝑇 ) ) ) |
| 53 | 52 | adantr | ⊢ ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) ∧ ∀ 𝑧 ( dom ( 𝑧 ∖ I ) ≺ dom ( 𝑦 ∖ I ) → ( 𝑧 ∈ 𝐵 → 𝑧 ∈ ( 𝐾 ‘ 𝑇 ) ) ) ) → ( dom ( 𝑦 ∖ I ) = ∅ → 𝑦 ∈ ( 𝐾 ‘ 𝑇 ) ) ) |
| 54 | n0 | ⊢ ( dom ( 𝑦 ∖ I ) ≠ ∅ ↔ ∃ 𝑢 𝑢 ∈ dom ( 𝑦 ∖ I ) ) | |
| 55 | 40 | adantr | ⊢ ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → 𝐷 ∈ V ) |
| 56 | simpr | ⊢ ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → 𝑢 ∈ dom ( 𝑦 ∖ I ) ) | |
| 57 | f1omvdmvd | ⊢ ( ( 𝑦 : 𝐷 –1-1-onto→ 𝐷 ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → ( 𝑦 ‘ 𝑢 ) ∈ ( dom ( 𝑦 ∖ I ) ∖ { 𝑢 } ) ) | |
| 58 | 35 57 | sylan | ⊢ ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → ( 𝑦 ‘ 𝑢 ) ∈ ( dom ( 𝑦 ∖ I ) ∖ { 𝑢 } ) ) |
| 59 | 58 | eldifad | ⊢ ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → ( 𝑦 ‘ 𝑢 ) ∈ dom ( 𝑦 ∖ I ) ) |
| 60 | 56 59 | prssd | ⊢ ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ⊆ dom ( 𝑦 ∖ I ) ) |
| 61 | difss | ⊢ ( 𝑦 ∖ I ) ⊆ 𝑦 | |
| 62 | dmss | ⊢ ( ( 𝑦 ∖ I ) ⊆ 𝑦 → dom ( 𝑦 ∖ I ) ⊆ dom 𝑦 ) | |
| 63 | 61 62 | ax-mp | ⊢ dom ( 𝑦 ∖ I ) ⊆ dom 𝑦 |
| 64 | f1odm | ⊢ ( 𝑦 : 𝐷 –1-1-onto→ 𝐷 → dom 𝑦 = 𝐷 ) | |
| 65 | 35 64 | syl | ⊢ ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) → dom 𝑦 = 𝐷 ) |
| 66 | 63 65 | sseqtrid | ⊢ ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) → dom ( 𝑦 ∖ I ) ⊆ 𝐷 ) |
| 67 | 66 | adantr | ⊢ ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → dom ( 𝑦 ∖ I ) ⊆ 𝐷 ) |
| 68 | 60 67 | sstrd | ⊢ ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ⊆ 𝐷 ) |
| 69 | vex | ⊢ 𝑢 ∈ V | |
| 70 | fvex | ⊢ ( 𝑦 ‘ 𝑢 ) ∈ V | |
| 71 | 35 | adantr | ⊢ ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → 𝑦 : 𝐷 –1-1-onto→ 𝐷 ) |
| 72 | 71 36 | syl | ⊢ ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → 𝑦 Fn 𝐷 ) |
| 73 | 66 | sselda | ⊢ ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → 𝑢 ∈ 𝐷 ) |
| 74 | fnelnfp | ⊢ ( ( 𝑦 Fn 𝐷 ∧ 𝑢 ∈ 𝐷 ) → ( 𝑢 ∈ dom ( 𝑦 ∖ I ) ↔ ( 𝑦 ‘ 𝑢 ) ≠ 𝑢 ) ) | |
| 75 | 72 73 74 | syl2anc | ⊢ ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → ( 𝑢 ∈ dom ( 𝑦 ∖ I ) ↔ ( 𝑦 ‘ 𝑢 ) ≠ 𝑢 ) ) |
| 76 | 56 75 | mpbid | ⊢ ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → ( 𝑦 ‘ 𝑢 ) ≠ 𝑢 ) |
| 77 | 76 | necomd | ⊢ ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → 𝑢 ≠ ( 𝑦 ‘ 𝑢 ) ) |
| 78 | enpr2 | ⊢ ( ( 𝑢 ∈ V ∧ ( 𝑦 ‘ 𝑢 ) ∈ V ∧ 𝑢 ≠ ( 𝑦 ‘ 𝑢 ) ) → { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ≈ 2o ) | |
| 79 | 69 70 77 78 | mp3an12i | ⊢ ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ≈ 2o ) |
| 80 | 17 1 | pmtrrn | ⊢ ( ( 𝐷 ∈ V ∧ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ⊆ 𝐷 ∧ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ≈ 2o ) → ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ∈ 𝑇 ) |
| 81 | 55 68 79 80 | syl3anc | ⊢ ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ∈ 𝑇 ) |
| 82 | 12 81 | sselid | ⊢ ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ∈ 𝐵 ) |
| 83 | simplr | ⊢ ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → 𝑦 ∈ 𝐵 ) | |
| 84 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 85 | 2 3 84 | symgov | ⊢ ( ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ( +g ‘ 𝐺 ) 𝑦 ) = ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ∘ 𝑦 ) ) |
| 86 | 82 83 85 | syl2anc | ⊢ ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ( +g ‘ 𝐺 ) 𝑦 ) = ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ∘ 𝑦 ) ) |
| 87 | 86 | oveq2d | ⊢ ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ( +g ‘ 𝐺 ) ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ( +g ‘ 𝐺 ) 𝑦 ) ) = ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ( +g ‘ 𝐺 ) ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ∘ 𝑦 ) ) ) |
| 88 | 40 6 | syl | ⊢ ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) → 𝐺 ∈ Grp ) |
| 89 | 88 | adantr | ⊢ ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → 𝐺 ∈ Grp ) |
| 90 | 3 84 | grpcl | ⊢ ( ( 𝐺 ∈ Grp ∧ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝐵 ) |
| 91 | 89 82 83 90 | syl3anc | ⊢ ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝐵 ) |
| 92 | 86 91 | eqeltrrd | ⊢ ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ∘ 𝑦 ) ∈ 𝐵 ) |
| 93 | 2 3 84 | symgov | ⊢ ( ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ∈ 𝐵 ∧ ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ∘ 𝑦 ) ∈ 𝐵 ) → ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ( +g ‘ 𝐺 ) ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ∘ 𝑦 ) ) = ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ∘ ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ∘ 𝑦 ) ) ) |
| 94 | 82 92 93 | syl2anc | ⊢ ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ( +g ‘ 𝐺 ) ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ∘ 𝑦 ) ) = ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ∘ ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ∘ 𝑦 ) ) ) |
| 95 | coass | ⊢ ( ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ∘ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ) ∘ 𝑦 ) = ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ∘ ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ∘ 𝑦 ) ) | |
| 96 | 17 1 | pmtrfinv | ⊢ ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ∈ 𝑇 → ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ∘ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ) = ( I ↾ 𝐷 ) ) |
| 97 | 81 96 | syl | ⊢ ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ∘ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ) = ( I ↾ 𝐷 ) ) |
| 98 | 97 | coeq1d | ⊢ ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → ( ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ∘ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ) ∘ 𝑦 ) = ( ( I ↾ 𝐷 ) ∘ 𝑦 ) ) |
| 99 | f1of | ⊢ ( 𝑦 : 𝐷 –1-1-onto→ 𝐷 → 𝑦 : 𝐷 ⟶ 𝐷 ) | |
| 100 | fcoi2 | ⊢ ( 𝑦 : 𝐷 ⟶ 𝐷 → ( ( I ↾ 𝐷 ) ∘ 𝑦 ) = 𝑦 ) | |
| 101 | 71 99 100 | 3syl | ⊢ ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → ( ( I ↾ 𝐷 ) ∘ 𝑦 ) = 𝑦 ) |
| 102 | 98 101 | eqtrd | ⊢ ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → ( ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ∘ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ) ∘ 𝑦 ) = 𝑦 ) |
| 103 | 95 102 | eqtr3id | ⊢ ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ∘ ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ∘ 𝑦 ) ) = 𝑦 ) |
| 104 | 87 94 103 | 3eqtrd | ⊢ ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ( +g ‘ 𝐺 ) ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ( +g ‘ 𝐺 ) 𝑦 ) ) = 𝑦 ) |
| 105 | 104 | adantlr | ⊢ ( ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) ∧ ∀ 𝑧 ( dom ( 𝑧 ∖ I ) ≺ dom ( 𝑦 ∖ I ) → ( 𝑧 ∈ 𝐵 → 𝑧 ∈ ( 𝐾 ‘ 𝑇 ) ) ) ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ( +g ‘ 𝐺 ) ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ( +g ‘ 𝐺 ) 𝑦 ) ) = 𝑦 ) |
| 106 | 45 | ad2antrr | ⊢ ( ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) ∧ ∀ 𝑧 ( dom ( 𝑧 ∖ I ) ≺ dom ( 𝑦 ∖ I ) → ( 𝑧 ∈ 𝐵 → 𝑧 ∈ ( 𝐾 ‘ 𝑇 ) ) ) ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → ( 𝐾 ‘ 𝑇 ) ∈ ( SubMnd ‘ 𝐺 ) ) |
| 107 | 4 | mrcssid | ⊢ ( ( ( SubMnd ‘ 𝐺 ) ∈ ( Moore ‘ 𝐵 ) ∧ 𝑇 ⊆ 𝐵 ) → 𝑇 ⊆ ( 𝐾 ‘ 𝑇 ) ) |
| 108 | 43 12 107 | sylancl | ⊢ ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) → 𝑇 ⊆ ( 𝐾 ‘ 𝑇 ) ) |
| 109 | 108 | adantr | ⊢ ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → 𝑇 ⊆ ( 𝐾 ‘ 𝑇 ) ) |
| 110 | 109 81 | sseldd | ⊢ ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ∈ ( 𝐾 ‘ 𝑇 ) ) |
| 111 | 110 | adantlr | ⊢ ( ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) ∧ ∀ 𝑧 ( dom ( 𝑧 ∖ I ) ≺ dom ( 𝑦 ∖ I ) → ( 𝑧 ∈ 𝐵 → 𝑧 ∈ ( 𝐾 ‘ 𝑇 ) ) ) ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ∈ ( 𝐾 ‘ 𝑇 ) ) |
| 112 | 86 | difeq1d | ⊢ ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → ( ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ( +g ‘ 𝐺 ) 𝑦 ) ∖ I ) = ( ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ∘ 𝑦 ) ∖ I ) ) |
| 113 | 112 | dmeqd | ⊢ ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → dom ( ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ( +g ‘ 𝐺 ) 𝑦 ) ∖ I ) = dom ( ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ∘ 𝑦 ) ∖ I ) ) |
| 114 | simpll | ⊢ ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → dom ( 𝑦 ∖ I ) ∈ Fin ) | |
| 115 | mvdco | ⊢ dom ( ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ∘ 𝑦 ) ∖ I ) ⊆ ( dom ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ∖ I ) ∪ dom ( 𝑦 ∖ I ) ) | |
| 116 | 17 | pmtrmvd | ⊢ ( ( 𝐷 ∈ V ∧ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ⊆ 𝐷 ∧ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ≈ 2o ) → dom ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ∖ I ) = { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) |
| 117 | 55 68 79 116 | syl3anc | ⊢ ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → dom ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ∖ I ) = { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) |
| 118 | 117 60 | eqsstrd | ⊢ ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → dom ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ∖ I ) ⊆ dom ( 𝑦 ∖ I ) ) |
| 119 | ssidd | ⊢ ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → dom ( 𝑦 ∖ I ) ⊆ dom ( 𝑦 ∖ I ) ) | |
| 120 | 118 119 | unssd | ⊢ ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → ( dom ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ∖ I ) ∪ dom ( 𝑦 ∖ I ) ) ⊆ dom ( 𝑦 ∖ I ) ) |
| 121 | 115 120 | sstrid | ⊢ ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → dom ( ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ∘ 𝑦 ) ∖ I ) ⊆ dom ( 𝑦 ∖ I ) ) |
| 122 | fvco2 | ⊢ ( ( 𝑦 Fn 𝐷 ∧ 𝑢 ∈ 𝐷 ) → ( ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ∘ 𝑦 ) ‘ 𝑢 ) = ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ‘ ( 𝑦 ‘ 𝑢 ) ) ) | |
| 123 | 72 73 122 | syl2anc | ⊢ ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → ( ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ∘ 𝑦 ) ‘ 𝑢 ) = ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ‘ ( 𝑦 ‘ 𝑢 ) ) ) |
| 124 | prcom | ⊢ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } = { ( 𝑦 ‘ 𝑢 ) , 𝑢 } | |
| 125 | 124 | fveq2i | ⊢ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) = ( ( pmTrsp ‘ 𝐷 ) ‘ { ( 𝑦 ‘ 𝑢 ) , 𝑢 } ) |
| 126 | 125 | fveq1i | ⊢ ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ‘ ( 𝑦 ‘ 𝑢 ) ) = ( ( ( pmTrsp ‘ 𝐷 ) ‘ { ( 𝑦 ‘ 𝑢 ) , 𝑢 } ) ‘ ( 𝑦 ‘ 𝑢 ) ) |
| 127 | 67 59 | sseldd | ⊢ ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → ( 𝑦 ‘ 𝑢 ) ∈ 𝐷 ) |
| 128 | 17 | pmtrprfv | ⊢ ( ( 𝐷 ∈ V ∧ ( ( 𝑦 ‘ 𝑢 ) ∈ 𝐷 ∧ 𝑢 ∈ 𝐷 ∧ ( 𝑦 ‘ 𝑢 ) ≠ 𝑢 ) ) → ( ( ( pmTrsp ‘ 𝐷 ) ‘ { ( 𝑦 ‘ 𝑢 ) , 𝑢 } ) ‘ ( 𝑦 ‘ 𝑢 ) ) = 𝑢 ) |
| 129 | 55 127 73 76 128 | syl13anc | ⊢ ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → ( ( ( pmTrsp ‘ 𝐷 ) ‘ { ( 𝑦 ‘ 𝑢 ) , 𝑢 } ) ‘ ( 𝑦 ‘ 𝑢 ) ) = 𝑢 ) |
| 130 | 126 129 | eqtrid | ⊢ ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ‘ ( 𝑦 ‘ 𝑢 ) ) = 𝑢 ) |
| 131 | 123 130 | eqtrd | ⊢ ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → ( ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ∘ 𝑦 ) ‘ 𝑢 ) = 𝑢 ) |
| 132 | 2 3 | symgbasf1o | ⊢ ( ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ∘ 𝑦 ) ∈ 𝐵 → ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ∘ 𝑦 ) : 𝐷 –1-1-onto→ 𝐷 ) |
| 133 | f1ofn | ⊢ ( ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ∘ 𝑦 ) : 𝐷 –1-1-onto→ 𝐷 → ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ∘ 𝑦 ) Fn 𝐷 ) | |
| 134 | 92 132 133 | 3syl | ⊢ ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ∘ 𝑦 ) Fn 𝐷 ) |
| 135 | fnelnfp | ⊢ ( ( ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ∘ 𝑦 ) Fn 𝐷 ∧ 𝑢 ∈ 𝐷 ) → ( 𝑢 ∈ dom ( ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ∘ 𝑦 ) ∖ I ) ↔ ( ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ∘ 𝑦 ) ‘ 𝑢 ) ≠ 𝑢 ) ) | |
| 136 | 135 | necon2bbid | ⊢ ( ( ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ∘ 𝑦 ) Fn 𝐷 ∧ 𝑢 ∈ 𝐷 ) → ( ( ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ∘ 𝑦 ) ‘ 𝑢 ) = 𝑢 ↔ ¬ 𝑢 ∈ dom ( ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ∘ 𝑦 ) ∖ I ) ) ) |
| 137 | 134 73 136 | syl2anc | ⊢ ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → ( ( ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ∘ 𝑦 ) ‘ 𝑢 ) = 𝑢 ↔ ¬ 𝑢 ∈ dom ( ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ∘ 𝑦 ) ∖ I ) ) ) |
| 138 | 131 137 | mpbid | ⊢ ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → ¬ 𝑢 ∈ dom ( ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ∘ 𝑦 ) ∖ I ) ) |
| 139 | 121 56 138 | ssnelpssd | ⊢ ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → dom ( ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ∘ 𝑦 ) ∖ I ) ⊊ dom ( 𝑦 ∖ I ) ) |
| 140 | php3 | ⊢ ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ dom ( ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ∘ 𝑦 ) ∖ I ) ⊊ dom ( 𝑦 ∖ I ) ) → dom ( ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ∘ 𝑦 ) ∖ I ) ≺ dom ( 𝑦 ∖ I ) ) | |
| 141 | 114 139 140 | syl2anc | ⊢ ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → dom ( ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ∘ 𝑦 ) ∖ I ) ≺ dom ( 𝑦 ∖ I ) ) |
| 142 | 113 141 | eqbrtrd | ⊢ ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → dom ( ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ( +g ‘ 𝐺 ) 𝑦 ) ∖ I ) ≺ dom ( 𝑦 ∖ I ) ) |
| 143 | 142 | adantlr | ⊢ ( ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) ∧ ∀ 𝑧 ( dom ( 𝑧 ∖ I ) ≺ dom ( 𝑦 ∖ I ) → ( 𝑧 ∈ 𝐵 → 𝑧 ∈ ( 𝐾 ‘ 𝑇 ) ) ) ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → dom ( ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ( +g ‘ 𝐺 ) 𝑦 ) ∖ I ) ≺ dom ( 𝑦 ∖ I ) ) |
| 144 | 91 | adantlr | ⊢ ( ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) ∧ ∀ 𝑧 ( dom ( 𝑧 ∖ I ) ≺ dom ( 𝑦 ∖ I ) → ( 𝑧 ∈ 𝐵 → 𝑧 ∈ ( 𝐾 ‘ 𝑇 ) ) ) ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝐵 ) |
| 145 | ovex | ⊢ ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ( +g ‘ 𝐺 ) 𝑦 ) ∈ V | |
| 146 | difeq1 | ⊢ ( 𝑧 = ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ( +g ‘ 𝐺 ) 𝑦 ) → ( 𝑧 ∖ I ) = ( ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ( +g ‘ 𝐺 ) 𝑦 ) ∖ I ) ) | |
| 147 | 146 | dmeqd | ⊢ ( 𝑧 = ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ( +g ‘ 𝐺 ) 𝑦 ) → dom ( 𝑧 ∖ I ) = dom ( ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ( +g ‘ 𝐺 ) 𝑦 ) ∖ I ) ) |
| 148 | 147 | breq1d | ⊢ ( 𝑧 = ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ( +g ‘ 𝐺 ) 𝑦 ) → ( dom ( 𝑧 ∖ I ) ≺ dom ( 𝑦 ∖ I ) ↔ dom ( ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ( +g ‘ 𝐺 ) 𝑦 ) ∖ I ) ≺ dom ( 𝑦 ∖ I ) ) ) |
| 149 | eleq1 | ⊢ ( 𝑧 = ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ( +g ‘ 𝐺 ) 𝑦 ) → ( 𝑧 ∈ 𝐵 ↔ ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝐵 ) ) | |
| 150 | eleq1 | ⊢ ( 𝑧 = ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ( +g ‘ 𝐺 ) 𝑦 ) → ( 𝑧 ∈ ( 𝐾 ‘ 𝑇 ) ↔ ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ( +g ‘ 𝐺 ) 𝑦 ) ∈ ( 𝐾 ‘ 𝑇 ) ) ) | |
| 151 | 149 150 | imbi12d | ⊢ ( 𝑧 = ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ( +g ‘ 𝐺 ) 𝑦 ) → ( ( 𝑧 ∈ 𝐵 → 𝑧 ∈ ( 𝐾 ‘ 𝑇 ) ) ↔ ( ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝐵 → ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ( +g ‘ 𝐺 ) 𝑦 ) ∈ ( 𝐾 ‘ 𝑇 ) ) ) ) |
| 152 | 148 151 | imbi12d | ⊢ ( 𝑧 = ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ( +g ‘ 𝐺 ) 𝑦 ) → ( ( dom ( 𝑧 ∖ I ) ≺ dom ( 𝑦 ∖ I ) → ( 𝑧 ∈ 𝐵 → 𝑧 ∈ ( 𝐾 ‘ 𝑇 ) ) ) ↔ ( dom ( ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ( +g ‘ 𝐺 ) 𝑦 ) ∖ I ) ≺ dom ( 𝑦 ∖ I ) → ( ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝐵 → ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ( +g ‘ 𝐺 ) 𝑦 ) ∈ ( 𝐾 ‘ 𝑇 ) ) ) ) ) |
| 153 | 145 152 | spcv | ⊢ ( ∀ 𝑧 ( dom ( 𝑧 ∖ I ) ≺ dom ( 𝑦 ∖ I ) → ( 𝑧 ∈ 𝐵 → 𝑧 ∈ ( 𝐾 ‘ 𝑇 ) ) ) → ( dom ( ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ( +g ‘ 𝐺 ) 𝑦 ) ∖ I ) ≺ dom ( 𝑦 ∖ I ) → ( ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝐵 → ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ( +g ‘ 𝐺 ) 𝑦 ) ∈ ( 𝐾 ‘ 𝑇 ) ) ) ) |
| 154 | 153 | ad2antlr | ⊢ ( ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) ∧ ∀ 𝑧 ( dom ( 𝑧 ∖ I ) ≺ dom ( 𝑦 ∖ I ) → ( 𝑧 ∈ 𝐵 → 𝑧 ∈ ( 𝐾 ‘ 𝑇 ) ) ) ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → ( dom ( ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ( +g ‘ 𝐺 ) 𝑦 ) ∖ I ) ≺ dom ( 𝑦 ∖ I ) → ( ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝐵 → ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ( +g ‘ 𝐺 ) 𝑦 ) ∈ ( 𝐾 ‘ 𝑇 ) ) ) ) |
| 155 | 143 144 154 | mp2d | ⊢ ( ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) ∧ ∀ 𝑧 ( dom ( 𝑧 ∖ I ) ≺ dom ( 𝑦 ∖ I ) → ( 𝑧 ∈ 𝐵 → 𝑧 ∈ ( 𝐾 ‘ 𝑇 ) ) ) ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ( +g ‘ 𝐺 ) 𝑦 ) ∈ ( 𝐾 ‘ 𝑇 ) ) |
| 156 | 84 | submcl | ⊢ ( ( ( 𝐾 ‘ 𝑇 ) ∈ ( SubMnd ‘ 𝐺 ) ∧ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ∈ ( 𝐾 ‘ 𝑇 ) ∧ ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ( +g ‘ 𝐺 ) 𝑦 ) ∈ ( 𝐾 ‘ 𝑇 ) ) → ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ( +g ‘ 𝐺 ) ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ( +g ‘ 𝐺 ) 𝑦 ) ) ∈ ( 𝐾 ‘ 𝑇 ) ) |
| 157 | 106 111 155 156 | syl3anc | ⊢ ( ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) ∧ ∀ 𝑧 ( dom ( 𝑧 ∖ I ) ≺ dom ( 𝑦 ∖ I ) → ( 𝑧 ∈ 𝐵 → 𝑧 ∈ ( 𝐾 ‘ 𝑇 ) ) ) ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ( +g ‘ 𝐺 ) ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ( +g ‘ 𝐺 ) 𝑦 ) ) ∈ ( 𝐾 ‘ 𝑇 ) ) |
| 158 | 105 157 | eqeltrrd | ⊢ ( ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) ∧ ∀ 𝑧 ( dom ( 𝑧 ∖ I ) ≺ dom ( 𝑦 ∖ I ) → ( 𝑧 ∈ 𝐵 → 𝑧 ∈ ( 𝐾 ‘ 𝑇 ) ) ) ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → 𝑦 ∈ ( 𝐾 ‘ 𝑇 ) ) |
| 159 | 158 | ex | ⊢ ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) ∧ ∀ 𝑧 ( dom ( 𝑧 ∖ I ) ≺ dom ( 𝑦 ∖ I ) → ( 𝑧 ∈ 𝐵 → 𝑧 ∈ ( 𝐾 ‘ 𝑇 ) ) ) ) → ( 𝑢 ∈ dom ( 𝑦 ∖ I ) → 𝑦 ∈ ( 𝐾 ‘ 𝑇 ) ) ) |
| 160 | 159 | exlimdv | ⊢ ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) ∧ ∀ 𝑧 ( dom ( 𝑧 ∖ I ) ≺ dom ( 𝑦 ∖ I ) → ( 𝑧 ∈ 𝐵 → 𝑧 ∈ ( 𝐾 ‘ 𝑇 ) ) ) ) → ( ∃ 𝑢 𝑢 ∈ dom ( 𝑦 ∖ I ) → 𝑦 ∈ ( 𝐾 ‘ 𝑇 ) ) ) |
| 161 | 54 160 | biimtrid | ⊢ ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) ∧ ∀ 𝑧 ( dom ( 𝑧 ∖ I ) ≺ dom ( 𝑦 ∖ I ) → ( 𝑧 ∈ 𝐵 → 𝑧 ∈ ( 𝐾 ‘ 𝑇 ) ) ) ) → ( dom ( 𝑦 ∖ I ) ≠ ∅ → 𝑦 ∈ ( 𝐾 ‘ 𝑇 ) ) ) |
| 162 | 53 161 | pm2.61dne | ⊢ ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) ∧ ∀ 𝑧 ( dom ( 𝑧 ∖ I ) ≺ dom ( 𝑦 ∖ I ) → ( 𝑧 ∈ 𝐵 → 𝑧 ∈ ( 𝐾 ‘ 𝑇 ) ) ) ) → 𝑦 ∈ ( 𝐾 ‘ 𝑇 ) ) |
| 163 | 162 | exp31 | ⊢ ( dom ( 𝑦 ∖ I ) ∈ Fin → ( 𝑦 ∈ 𝐵 → ( ∀ 𝑧 ( dom ( 𝑧 ∖ I ) ≺ dom ( 𝑦 ∖ I ) → ( 𝑧 ∈ 𝐵 → 𝑧 ∈ ( 𝐾 ‘ 𝑇 ) ) ) → 𝑦 ∈ ( 𝐾 ‘ 𝑇 ) ) ) ) |
| 164 | 163 | com23 | ⊢ ( dom ( 𝑦 ∖ I ) ∈ Fin → ( ∀ 𝑧 ( dom ( 𝑧 ∖ I ) ≺ dom ( 𝑦 ∖ I ) → ( 𝑧 ∈ 𝐵 → 𝑧 ∈ ( 𝐾 ‘ 𝑇 ) ) ) → ( 𝑦 ∈ 𝐵 → 𝑦 ∈ ( 𝐾 ‘ 𝑇 ) ) ) ) |
| 165 | 33 164 | syl | ⊢ ( ( dom ( 𝑥 ∖ I ) ∈ Fin ∧ dom ( 𝑦 ∖ I ) ≼ dom ( 𝑥 ∖ I ) ) → ( ∀ 𝑧 ( dom ( 𝑧 ∖ I ) ≺ dom ( 𝑦 ∖ I ) → ( 𝑧 ∈ 𝐵 → 𝑧 ∈ ( 𝐾 ‘ 𝑇 ) ) ) → ( 𝑦 ∈ 𝐵 → 𝑦 ∈ ( 𝐾 ‘ 𝑇 ) ) ) ) |
| 166 | 165 | 3impia | ⊢ ( ( dom ( 𝑥 ∖ I ) ∈ Fin ∧ dom ( 𝑦 ∖ I ) ≼ dom ( 𝑥 ∖ I ) ∧ ∀ 𝑧 ( dom ( 𝑧 ∖ I ) ≺ dom ( 𝑦 ∖ I ) → ( 𝑧 ∈ 𝐵 → 𝑧 ∈ ( 𝐾 ‘ 𝑇 ) ) ) ) → ( 𝑦 ∈ 𝐵 → 𝑦 ∈ ( 𝐾 ‘ 𝑇 ) ) ) |
| 167 | eleq1w | ⊢ ( 𝑦 = 𝑧 → ( 𝑦 ∈ 𝐵 ↔ 𝑧 ∈ 𝐵 ) ) | |
| 168 | eleq1w | ⊢ ( 𝑦 = 𝑧 → ( 𝑦 ∈ ( 𝐾 ‘ 𝑇 ) ↔ 𝑧 ∈ ( 𝐾 ‘ 𝑇 ) ) ) | |
| 169 | 167 168 | imbi12d | ⊢ ( 𝑦 = 𝑧 → ( ( 𝑦 ∈ 𝐵 → 𝑦 ∈ ( 𝐾 ‘ 𝑇 ) ) ↔ ( 𝑧 ∈ 𝐵 → 𝑧 ∈ ( 𝐾 ‘ 𝑇 ) ) ) ) |
| 170 | eleq1w | ⊢ ( 𝑦 = 𝑥 → ( 𝑦 ∈ 𝐵 ↔ 𝑥 ∈ 𝐵 ) ) | |
| 171 | eleq1w | ⊢ ( 𝑦 = 𝑥 → ( 𝑦 ∈ ( 𝐾 ‘ 𝑇 ) ↔ 𝑥 ∈ ( 𝐾 ‘ 𝑇 ) ) ) | |
| 172 | 170 171 | imbi12d | ⊢ ( 𝑦 = 𝑥 → ( ( 𝑦 ∈ 𝐵 → 𝑦 ∈ ( 𝐾 ‘ 𝑇 ) ) ↔ ( 𝑥 ∈ 𝐵 → 𝑥 ∈ ( 𝐾 ‘ 𝑇 ) ) ) ) |
| 173 | difeq1 | ⊢ ( 𝑦 = 𝑧 → ( 𝑦 ∖ I ) = ( 𝑧 ∖ I ) ) | |
| 174 | 173 | dmeqd | ⊢ ( 𝑦 = 𝑧 → dom ( 𝑦 ∖ I ) = dom ( 𝑧 ∖ I ) ) |
| 175 | difeq1 | ⊢ ( 𝑦 = 𝑥 → ( 𝑦 ∖ I ) = ( 𝑥 ∖ I ) ) | |
| 176 | 175 | dmeqd | ⊢ ( 𝑦 = 𝑥 → dom ( 𝑦 ∖ I ) = dom ( 𝑥 ∖ I ) ) |
| 177 | 31 32 166 169 172 174 176 | indcardi | ⊢ ( dom ( 𝑥 ∖ I ) ∈ Fin → ( 𝑥 ∈ 𝐵 → 𝑥 ∈ ( 𝐾 ‘ 𝑇 ) ) ) |
| 178 | 177 | impcom | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ dom ( 𝑥 ∖ I ) ∈ Fin ) → 𝑥 ∈ ( 𝐾 ‘ 𝑇 ) ) |
| 179 | 178 | 3adant1 | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵 ∧ dom ( 𝑥 ∖ I ) ∈ Fin ) → 𝑥 ∈ ( 𝐾 ‘ 𝑇 ) ) |
| 180 | 179 | rabssdv | ⊢ ( 𝐷 ∈ 𝑉 → { 𝑥 ∈ 𝐵 ∣ dom ( 𝑥 ∖ I ) ∈ Fin } ⊆ ( 𝐾 ‘ 𝑇 ) ) |
| 181 | 29 180 | eqssd | ⊢ ( 𝐷 ∈ 𝑉 → ( 𝐾 ‘ 𝑇 ) = { 𝑥 ∈ 𝐵 ∣ dom ( 𝑥 ∖ I ) ∈ Fin } ) |