This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A finite permutation group is generated by the transpositions, see also Theorem 3.4 in Rotman p. 31. (Contributed by Stefan O'Rear, 28-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | symgtrf.t | ⊢ 𝑇 = ran ( pmTrsp ‘ 𝐷 ) | |
| symgtrf.g | ⊢ 𝐺 = ( SymGrp ‘ 𝐷 ) | ||
| symgtrf.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | ||
| symggen.k | ⊢ 𝐾 = ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) | ||
| Assertion | symggen2 | ⊢ ( 𝐷 ∈ Fin → ( 𝐾 ‘ 𝑇 ) = 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | symgtrf.t | ⊢ 𝑇 = ran ( pmTrsp ‘ 𝐷 ) | |
| 2 | symgtrf.g | ⊢ 𝐺 = ( SymGrp ‘ 𝐷 ) | |
| 3 | symgtrf.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 4 | symggen.k | ⊢ 𝐾 = ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) | |
| 5 | 1 2 3 4 | symggen | ⊢ ( 𝐷 ∈ Fin → ( 𝐾 ‘ 𝑇 ) = { 𝑥 ∈ 𝐵 ∣ dom ( 𝑥 ∖ I ) ∈ Fin } ) |
| 6 | difss | ⊢ ( 𝑥 ∖ I ) ⊆ 𝑥 | |
| 7 | dmss | ⊢ ( ( 𝑥 ∖ I ) ⊆ 𝑥 → dom ( 𝑥 ∖ I ) ⊆ dom 𝑥 ) | |
| 8 | 6 7 | ax-mp | ⊢ dom ( 𝑥 ∖ I ) ⊆ dom 𝑥 |
| 9 | 2 3 | symgbasf1o | ⊢ ( 𝑥 ∈ 𝐵 → 𝑥 : 𝐷 –1-1-onto→ 𝐷 ) |
| 10 | f1odm | ⊢ ( 𝑥 : 𝐷 –1-1-onto→ 𝐷 → dom 𝑥 = 𝐷 ) | |
| 11 | 9 10 | syl | ⊢ ( 𝑥 ∈ 𝐵 → dom 𝑥 = 𝐷 ) |
| 12 | 8 11 | sseqtrid | ⊢ ( 𝑥 ∈ 𝐵 → dom ( 𝑥 ∖ I ) ⊆ 𝐷 ) |
| 13 | ssfi | ⊢ ( ( 𝐷 ∈ Fin ∧ dom ( 𝑥 ∖ I ) ⊆ 𝐷 ) → dom ( 𝑥 ∖ I ) ∈ Fin ) | |
| 14 | 12 13 | sylan2 | ⊢ ( ( 𝐷 ∈ Fin ∧ 𝑥 ∈ 𝐵 ) → dom ( 𝑥 ∖ I ) ∈ Fin ) |
| 15 | 14 | ralrimiva | ⊢ ( 𝐷 ∈ Fin → ∀ 𝑥 ∈ 𝐵 dom ( 𝑥 ∖ I ) ∈ Fin ) |
| 16 | rabid2 | ⊢ ( 𝐵 = { 𝑥 ∈ 𝐵 ∣ dom ( 𝑥 ∖ I ) ∈ Fin } ↔ ∀ 𝑥 ∈ 𝐵 dom ( 𝑥 ∖ I ) ∈ Fin ) | |
| 17 | 15 16 | sylibr | ⊢ ( 𝐷 ∈ Fin → 𝐵 = { 𝑥 ∈ 𝐵 ∣ dom ( 𝑥 ∖ I ) ∈ Fin } ) |
| 18 | 5 17 | eqtr4d | ⊢ ( 𝐷 ∈ Fin → ( 𝐾 ‘ 𝑇 ) = 𝐵 ) |