This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An intrinsic characterization of the transposition permutations. (Contributed by Stefan O'Rear, 22-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pmtrrn.t | ⊢ 𝑇 = ( pmTrsp ‘ 𝐷 ) | |
| pmtrrn.r | ⊢ 𝑅 = ran 𝑇 | ||
| Assertion | pmtrfb | ⊢ ( 𝐹 ∈ 𝑅 ↔ ( 𝐷 ∈ V ∧ 𝐹 : 𝐷 –1-1-onto→ 𝐷 ∧ dom ( 𝐹 ∖ I ) ≈ 2o ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pmtrrn.t | ⊢ 𝑇 = ( pmTrsp ‘ 𝐷 ) | |
| 2 | pmtrrn.r | ⊢ 𝑅 = ran 𝑇 | |
| 3 | eqid | ⊢ dom ( 𝐹 ∖ I ) = dom ( 𝐹 ∖ I ) | |
| 4 | 1 2 3 | pmtrfrn | ⊢ ( 𝐹 ∈ 𝑅 → ( ( 𝐷 ∈ V ∧ dom ( 𝐹 ∖ I ) ⊆ 𝐷 ∧ dom ( 𝐹 ∖ I ) ≈ 2o ) ∧ 𝐹 = ( 𝑇 ‘ dom ( 𝐹 ∖ I ) ) ) ) |
| 5 | simpl1 | ⊢ ( ( ( 𝐷 ∈ V ∧ dom ( 𝐹 ∖ I ) ⊆ 𝐷 ∧ dom ( 𝐹 ∖ I ) ≈ 2o ) ∧ 𝐹 = ( 𝑇 ‘ dom ( 𝐹 ∖ I ) ) ) → 𝐷 ∈ V ) | |
| 6 | 4 5 | syl | ⊢ ( 𝐹 ∈ 𝑅 → 𝐷 ∈ V ) |
| 7 | 1 2 | pmtrff1o | ⊢ ( 𝐹 ∈ 𝑅 → 𝐹 : 𝐷 –1-1-onto→ 𝐷 ) |
| 8 | simpl3 | ⊢ ( ( ( 𝐷 ∈ V ∧ dom ( 𝐹 ∖ I ) ⊆ 𝐷 ∧ dom ( 𝐹 ∖ I ) ≈ 2o ) ∧ 𝐹 = ( 𝑇 ‘ dom ( 𝐹 ∖ I ) ) ) → dom ( 𝐹 ∖ I ) ≈ 2o ) | |
| 9 | 4 8 | syl | ⊢ ( 𝐹 ∈ 𝑅 → dom ( 𝐹 ∖ I ) ≈ 2o ) |
| 10 | 6 7 9 | 3jca | ⊢ ( 𝐹 ∈ 𝑅 → ( 𝐷 ∈ V ∧ 𝐹 : 𝐷 –1-1-onto→ 𝐷 ∧ dom ( 𝐹 ∖ I ) ≈ 2o ) ) |
| 11 | simp2 | ⊢ ( ( 𝐷 ∈ V ∧ 𝐹 : 𝐷 –1-1-onto→ 𝐷 ∧ dom ( 𝐹 ∖ I ) ≈ 2o ) → 𝐹 : 𝐷 –1-1-onto→ 𝐷 ) | |
| 12 | difss | ⊢ ( 𝐹 ∖ I ) ⊆ 𝐹 | |
| 13 | dmss | ⊢ ( ( 𝐹 ∖ I ) ⊆ 𝐹 → dom ( 𝐹 ∖ I ) ⊆ dom 𝐹 ) | |
| 14 | 12 13 | ax-mp | ⊢ dom ( 𝐹 ∖ I ) ⊆ dom 𝐹 |
| 15 | f1odm | ⊢ ( 𝐹 : 𝐷 –1-1-onto→ 𝐷 → dom 𝐹 = 𝐷 ) | |
| 16 | 14 15 | sseqtrid | ⊢ ( 𝐹 : 𝐷 –1-1-onto→ 𝐷 → dom ( 𝐹 ∖ I ) ⊆ 𝐷 ) |
| 17 | 1 2 | pmtrrn | ⊢ ( ( 𝐷 ∈ V ∧ dom ( 𝐹 ∖ I ) ⊆ 𝐷 ∧ dom ( 𝐹 ∖ I ) ≈ 2o ) → ( 𝑇 ‘ dom ( 𝐹 ∖ I ) ) ∈ 𝑅 ) |
| 18 | 16 17 | syl3an2 | ⊢ ( ( 𝐷 ∈ V ∧ 𝐹 : 𝐷 –1-1-onto→ 𝐷 ∧ dom ( 𝐹 ∖ I ) ≈ 2o ) → ( 𝑇 ‘ dom ( 𝐹 ∖ I ) ) ∈ 𝑅 ) |
| 19 | 1 2 | pmtrff1o | ⊢ ( ( 𝑇 ‘ dom ( 𝐹 ∖ I ) ) ∈ 𝑅 → ( 𝑇 ‘ dom ( 𝐹 ∖ I ) ) : 𝐷 –1-1-onto→ 𝐷 ) |
| 20 | 18 19 | syl | ⊢ ( ( 𝐷 ∈ V ∧ 𝐹 : 𝐷 –1-1-onto→ 𝐷 ∧ dom ( 𝐹 ∖ I ) ≈ 2o ) → ( 𝑇 ‘ dom ( 𝐹 ∖ I ) ) : 𝐷 –1-1-onto→ 𝐷 ) |
| 21 | simp3 | ⊢ ( ( 𝐷 ∈ V ∧ 𝐹 : 𝐷 –1-1-onto→ 𝐷 ∧ dom ( 𝐹 ∖ I ) ≈ 2o ) → dom ( 𝐹 ∖ I ) ≈ 2o ) | |
| 22 | 1 | pmtrmvd | ⊢ ( ( 𝐷 ∈ V ∧ dom ( 𝐹 ∖ I ) ⊆ 𝐷 ∧ dom ( 𝐹 ∖ I ) ≈ 2o ) → dom ( ( 𝑇 ‘ dom ( 𝐹 ∖ I ) ) ∖ I ) = dom ( 𝐹 ∖ I ) ) |
| 23 | 16 22 | syl3an2 | ⊢ ( ( 𝐷 ∈ V ∧ 𝐹 : 𝐷 –1-1-onto→ 𝐷 ∧ dom ( 𝐹 ∖ I ) ≈ 2o ) → dom ( ( 𝑇 ‘ dom ( 𝐹 ∖ I ) ) ∖ I ) = dom ( 𝐹 ∖ I ) ) |
| 24 | f1otrspeq | ⊢ ( ( ( 𝐹 : 𝐷 –1-1-onto→ 𝐷 ∧ ( 𝑇 ‘ dom ( 𝐹 ∖ I ) ) : 𝐷 –1-1-onto→ 𝐷 ) ∧ ( dom ( 𝐹 ∖ I ) ≈ 2o ∧ dom ( ( 𝑇 ‘ dom ( 𝐹 ∖ I ) ) ∖ I ) = dom ( 𝐹 ∖ I ) ) ) → 𝐹 = ( 𝑇 ‘ dom ( 𝐹 ∖ I ) ) ) | |
| 25 | 11 20 21 23 24 | syl22anc | ⊢ ( ( 𝐷 ∈ V ∧ 𝐹 : 𝐷 –1-1-onto→ 𝐷 ∧ dom ( 𝐹 ∖ I ) ≈ 2o ) → 𝐹 = ( 𝑇 ‘ dom ( 𝐹 ∖ I ) ) ) |
| 26 | 25 18 | eqeltrd | ⊢ ( ( 𝐷 ∈ V ∧ 𝐹 : 𝐷 –1-1-onto→ 𝐷 ∧ dom ( 𝐹 ∖ I ) ≈ 2o ) → 𝐹 ∈ 𝑅 ) |
| 27 | 10 26 | impbii | ⊢ ( 𝐹 ∈ 𝑅 ↔ ( 𝐷 ∈ V ∧ 𝐹 : 𝐷 –1-1-onto→ 𝐷 ∧ dom ( 𝐹 ∖ I ) ≈ 2o ) ) |