This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Transposing two points gives a transposition function. (Contributed by Stefan O'Rear, 22-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pmtrrn.t | ⊢ 𝑇 = ( pmTrsp ‘ 𝐷 ) | |
| pmtrrn.r | ⊢ 𝑅 = ran 𝑇 | ||
| Assertion | pmtrrn | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) → ( 𝑇 ‘ 𝑃 ) ∈ 𝑅 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pmtrrn.t | ⊢ 𝑇 = ( pmTrsp ‘ 𝐷 ) | |
| 2 | pmtrrn.r | ⊢ 𝑅 = ran 𝑇 | |
| 3 | mptexg | ⊢ ( 𝐷 ∈ 𝑉 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑧 , ∪ ( 𝑧 ∖ { 𝑦 } ) , 𝑦 ) ) ∈ V ) | |
| 4 | 3 | ralrimivw | ⊢ ( 𝐷 ∈ 𝑉 → ∀ 𝑧 ∈ { 𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o } ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑧 , ∪ ( 𝑧 ∖ { 𝑦 } ) , 𝑦 ) ) ∈ V ) |
| 5 | 4 | 3ad2ant1 | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) → ∀ 𝑧 ∈ { 𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o } ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑧 , ∪ ( 𝑧 ∖ { 𝑦 } ) , 𝑦 ) ) ∈ V ) |
| 6 | eqid | ⊢ ( 𝑧 ∈ { 𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o } ↦ ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑧 , ∪ ( 𝑧 ∖ { 𝑦 } ) , 𝑦 ) ) ) = ( 𝑧 ∈ { 𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o } ↦ ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑧 , ∪ ( 𝑧 ∖ { 𝑦 } ) , 𝑦 ) ) ) | |
| 7 | 6 | fnmpt | ⊢ ( ∀ 𝑧 ∈ { 𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o } ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑧 , ∪ ( 𝑧 ∖ { 𝑦 } ) , 𝑦 ) ) ∈ V → ( 𝑧 ∈ { 𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o } ↦ ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑧 , ∪ ( 𝑧 ∖ { 𝑦 } ) , 𝑦 ) ) ) Fn { 𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o } ) |
| 8 | 5 7 | syl | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) → ( 𝑧 ∈ { 𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o } ↦ ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑧 , ∪ ( 𝑧 ∖ { 𝑦 } ) , 𝑦 ) ) ) Fn { 𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o } ) |
| 9 | 1 | pmtrfval | ⊢ ( 𝐷 ∈ 𝑉 → 𝑇 = ( 𝑧 ∈ { 𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o } ↦ ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑧 , ∪ ( 𝑧 ∖ { 𝑦 } ) , 𝑦 ) ) ) ) |
| 10 | 9 | 3ad2ant1 | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) → 𝑇 = ( 𝑧 ∈ { 𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o } ↦ ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑧 , ∪ ( 𝑧 ∖ { 𝑦 } ) , 𝑦 ) ) ) ) |
| 11 | 10 | fneq1d | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) → ( 𝑇 Fn { 𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o } ↔ ( 𝑧 ∈ { 𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o } ↦ ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑧 , ∪ ( 𝑧 ∖ { 𝑦 } ) , 𝑦 ) ) ) Fn { 𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o } ) ) |
| 12 | 8 11 | mpbird | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) → 𝑇 Fn { 𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o } ) |
| 13 | breq1 | ⊢ ( 𝑥 = 𝑃 → ( 𝑥 ≈ 2o ↔ 𝑃 ≈ 2o ) ) | |
| 14 | elpw2g | ⊢ ( 𝐷 ∈ 𝑉 → ( 𝑃 ∈ 𝒫 𝐷 ↔ 𝑃 ⊆ 𝐷 ) ) | |
| 15 | 14 | biimpar | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ) → 𝑃 ∈ 𝒫 𝐷 ) |
| 16 | 15 | 3adant3 | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) → 𝑃 ∈ 𝒫 𝐷 ) |
| 17 | simp3 | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) → 𝑃 ≈ 2o ) | |
| 18 | 13 16 17 | elrabd | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) → 𝑃 ∈ { 𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o } ) |
| 19 | fnfvelrn | ⊢ ( ( 𝑇 Fn { 𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o } ∧ 𝑃 ∈ { 𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o } ) → ( 𝑇 ‘ 𝑃 ) ∈ ran 𝑇 ) | |
| 20 | 12 18 19 | syl2anc | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) → ( 𝑇 ‘ 𝑃 ) ∈ ran 𝑇 ) |
| 21 | 20 2 | eleqtrrdi | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) → ( 𝑇 ‘ 𝑃 ) ∈ 𝑅 ) |