This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Submonoids are an algebraic closure system. (Contributed by Stefan O'Rear, 22-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | submacs.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| Assertion | submacs | ⊢ ( 𝐺 ∈ Mnd → ( SubMnd ‘ 𝐺 ) ∈ ( ACS ‘ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | submacs.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 3 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 4 | 1 2 3 | issubm | ⊢ ( 𝐺 ∈ Mnd → ( 𝑠 ∈ ( SubMnd ‘ 𝐺 ) ↔ ( 𝑠 ⊆ 𝐵 ∧ ( 0g ‘ 𝐺 ) ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑠 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑠 ) ) ) |
| 5 | velpw | ⊢ ( 𝑠 ∈ 𝒫 𝐵 ↔ 𝑠 ⊆ 𝐵 ) | |
| 6 | 5 | anbi1i | ⊢ ( ( 𝑠 ∈ 𝒫 𝐵 ∧ ( ( 0g ‘ 𝐺 ) ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑠 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑠 ) ) ↔ ( 𝑠 ⊆ 𝐵 ∧ ( ( 0g ‘ 𝐺 ) ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑠 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑠 ) ) ) |
| 7 | 3anass | ⊢ ( ( 𝑠 ⊆ 𝐵 ∧ ( 0g ‘ 𝐺 ) ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑠 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑠 ) ↔ ( 𝑠 ⊆ 𝐵 ∧ ( ( 0g ‘ 𝐺 ) ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑠 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑠 ) ) ) | |
| 8 | 6 7 | bitr4i | ⊢ ( ( 𝑠 ∈ 𝒫 𝐵 ∧ ( ( 0g ‘ 𝐺 ) ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑠 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑠 ) ) ↔ ( 𝑠 ⊆ 𝐵 ∧ ( 0g ‘ 𝐺 ) ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑠 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑠 ) ) |
| 9 | 4 8 | bitr4di | ⊢ ( 𝐺 ∈ Mnd → ( 𝑠 ∈ ( SubMnd ‘ 𝐺 ) ↔ ( 𝑠 ∈ 𝒫 𝐵 ∧ ( ( 0g ‘ 𝐺 ) ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑠 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑠 ) ) ) ) |
| 10 | 9 | eqabdv | ⊢ ( 𝐺 ∈ Mnd → ( SubMnd ‘ 𝐺 ) = { 𝑠 ∣ ( 𝑠 ∈ 𝒫 𝐵 ∧ ( ( 0g ‘ 𝐺 ) ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑠 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑠 ) ) } ) |
| 11 | df-rab | ⊢ { 𝑠 ∈ 𝒫 𝐵 ∣ ( ( 0g ‘ 𝐺 ) ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑠 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑠 ) } = { 𝑠 ∣ ( 𝑠 ∈ 𝒫 𝐵 ∧ ( ( 0g ‘ 𝐺 ) ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑠 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑠 ) ) } | |
| 12 | 10 11 | eqtr4di | ⊢ ( 𝐺 ∈ Mnd → ( SubMnd ‘ 𝐺 ) = { 𝑠 ∈ 𝒫 𝐵 ∣ ( ( 0g ‘ 𝐺 ) ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑠 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑠 ) } ) |
| 13 | inrab | ⊢ ( { 𝑠 ∈ 𝒫 𝐵 ∣ ( 0g ‘ 𝐺 ) ∈ 𝑠 } ∩ { 𝑠 ∈ 𝒫 𝐵 ∣ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑠 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑠 } ) = { 𝑠 ∈ 𝒫 𝐵 ∣ ( ( 0g ‘ 𝐺 ) ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑠 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑠 ) } | |
| 14 | 1 | fvexi | ⊢ 𝐵 ∈ V |
| 15 | mreacs | ⊢ ( 𝐵 ∈ V → ( ACS ‘ 𝐵 ) ∈ ( Moore ‘ 𝒫 𝐵 ) ) | |
| 16 | 14 15 | mp1i | ⊢ ( 𝐺 ∈ Mnd → ( ACS ‘ 𝐵 ) ∈ ( Moore ‘ 𝒫 𝐵 ) ) |
| 17 | 1 2 | mndidcl | ⊢ ( 𝐺 ∈ Mnd → ( 0g ‘ 𝐺 ) ∈ 𝐵 ) |
| 18 | acsfn0 | ⊢ ( ( 𝐵 ∈ V ∧ ( 0g ‘ 𝐺 ) ∈ 𝐵 ) → { 𝑠 ∈ 𝒫 𝐵 ∣ ( 0g ‘ 𝐺 ) ∈ 𝑠 } ∈ ( ACS ‘ 𝐵 ) ) | |
| 19 | 14 17 18 | sylancr | ⊢ ( 𝐺 ∈ Mnd → { 𝑠 ∈ 𝒫 𝐵 ∣ ( 0g ‘ 𝐺 ) ∈ 𝑠 } ∈ ( ACS ‘ 𝐵 ) ) |
| 20 | 1 3 | mndcl | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝐵 ) |
| 21 | 20 | 3expb | ⊢ ( ( 𝐺 ∈ Mnd ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝐵 ) |
| 22 | 21 | ralrimivva | ⊢ ( 𝐺 ∈ Mnd → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝐵 ) |
| 23 | acsfn2 | ⊢ ( ( 𝐵 ∈ V ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝐵 ) → { 𝑠 ∈ 𝒫 𝐵 ∣ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑠 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑠 } ∈ ( ACS ‘ 𝐵 ) ) | |
| 24 | 14 22 23 | sylancr | ⊢ ( 𝐺 ∈ Mnd → { 𝑠 ∈ 𝒫 𝐵 ∣ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑠 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑠 } ∈ ( ACS ‘ 𝐵 ) ) |
| 25 | mreincl | ⊢ ( ( ( ACS ‘ 𝐵 ) ∈ ( Moore ‘ 𝒫 𝐵 ) ∧ { 𝑠 ∈ 𝒫 𝐵 ∣ ( 0g ‘ 𝐺 ) ∈ 𝑠 } ∈ ( ACS ‘ 𝐵 ) ∧ { 𝑠 ∈ 𝒫 𝐵 ∣ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑠 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑠 } ∈ ( ACS ‘ 𝐵 ) ) → ( { 𝑠 ∈ 𝒫 𝐵 ∣ ( 0g ‘ 𝐺 ) ∈ 𝑠 } ∩ { 𝑠 ∈ 𝒫 𝐵 ∣ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑠 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑠 } ) ∈ ( ACS ‘ 𝐵 ) ) | |
| 26 | 16 19 24 25 | syl3anc | ⊢ ( 𝐺 ∈ Mnd → ( { 𝑠 ∈ 𝒫 𝐵 ∣ ( 0g ‘ 𝐺 ) ∈ 𝑠 } ∩ { 𝑠 ∈ 𝒫 𝐵 ∣ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑠 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑠 } ) ∈ ( ACS ‘ 𝐵 ) ) |
| 27 | 13 26 | eqeltrrid | ⊢ ( 𝐺 ∈ Mnd → { 𝑠 ∈ 𝒫 𝐵 ∣ ( ( 0g ‘ 𝐺 ) ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑠 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑠 ) } ∈ ( ACS ‘ 𝐵 ) ) |
| 28 | 12 27 | eqeltrd | ⊢ ( 𝐺 ∈ Mnd → ( SubMnd ‘ 𝐺 ) ∈ ( ACS ‘ 𝐵 ) ) |