This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function is the identity iff it moves no points. (Contributed by Stefan O'Rear, 25-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fnnfpeq0 | ⊢ ( 𝐹 Fn 𝐴 → ( dom ( 𝐹 ∖ I ) = ∅ ↔ 𝐹 = ( I ↾ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabeq0 | ⊢ ( { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) ≠ 𝑥 } = ∅ ↔ ∀ 𝑥 ∈ 𝐴 ¬ ( 𝐹 ‘ 𝑥 ) ≠ 𝑥 ) | |
| 2 | nne | ⊢ ( ¬ ( 𝐹 ‘ 𝑥 ) ≠ 𝑥 ↔ ( 𝐹 ‘ 𝑥 ) = 𝑥 ) | |
| 3 | fvresi | ⊢ ( 𝑥 ∈ 𝐴 → ( ( I ↾ 𝐴 ) ‘ 𝑥 ) = 𝑥 ) | |
| 4 | 3 | eqeq2d | ⊢ ( 𝑥 ∈ 𝐴 → ( ( 𝐹 ‘ 𝑥 ) = ( ( I ↾ 𝐴 ) ‘ 𝑥 ) ↔ ( 𝐹 ‘ 𝑥 ) = 𝑥 ) ) |
| 5 | 4 | adantl | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑥 ) = ( ( I ↾ 𝐴 ) ‘ 𝑥 ) ↔ ( 𝐹 ‘ 𝑥 ) = 𝑥 ) ) |
| 6 | 2 5 | bitr4id | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( ¬ ( 𝐹 ‘ 𝑥 ) ≠ 𝑥 ↔ ( 𝐹 ‘ 𝑥 ) = ( ( I ↾ 𝐴 ) ‘ 𝑥 ) ) ) |
| 7 | 6 | ralbidva | ⊢ ( 𝐹 Fn 𝐴 → ( ∀ 𝑥 ∈ 𝐴 ¬ ( 𝐹 ‘ 𝑥 ) ≠ 𝑥 ↔ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) = ( ( I ↾ 𝐴 ) ‘ 𝑥 ) ) ) |
| 8 | 1 7 | bitrid | ⊢ ( 𝐹 Fn 𝐴 → ( { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) ≠ 𝑥 } = ∅ ↔ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) = ( ( I ↾ 𝐴 ) ‘ 𝑥 ) ) ) |
| 9 | fndifnfp | ⊢ ( 𝐹 Fn 𝐴 → dom ( 𝐹 ∖ I ) = { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) ≠ 𝑥 } ) | |
| 10 | 9 | eqeq1d | ⊢ ( 𝐹 Fn 𝐴 → ( dom ( 𝐹 ∖ I ) = ∅ ↔ { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) ≠ 𝑥 } = ∅ ) ) |
| 11 | fnresi | ⊢ ( I ↾ 𝐴 ) Fn 𝐴 | |
| 12 | eqfnfv | ⊢ ( ( 𝐹 Fn 𝐴 ∧ ( I ↾ 𝐴 ) Fn 𝐴 ) → ( 𝐹 = ( I ↾ 𝐴 ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) = ( ( I ↾ 𝐴 ) ‘ 𝑥 ) ) ) | |
| 13 | 11 12 | mpan2 | ⊢ ( 𝐹 Fn 𝐴 → ( 𝐹 = ( I ↾ 𝐴 ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) = ( ( I ↾ 𝐴 ) ‘ 𝑥 ) ) ) |
| 14 | 8 10 13 | 3bitr4d | ⊢ ( 𝐹 Fn 𝐴 → ( dom ( 𝐹 ∖ I ) = ∅ ↔ 𝐹 = ( I ↾ 𝐴 ) ) ) |