This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Composing two permutations moves at most the union of the points. (Contributed by Stefan O'Rear, 22-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mvdco | ⊢ dom ( ( 𝐹 ∘ 𝐺 ) ∖ I ) ⊆ ( dom ( 𝐹 ∖ I ) ∪ dom ( 𝐺 ∖ I ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inundif | ⊢ ( ( 𝐺 ∩ I ) ∪ ( 𝐺 ∖ I ) ) = 𝐺 | |
| 2 | 1 | coeq2i | ⊢ ( 𝐹 ∘ ( ( 𝐺 ∩ I ) ∪ ( 𝐺 ∖ I ) ) ) = ( 𝐹 ∘ 𝐺 ) |
| 3 | coundi | ⊢ ( 𝐹 ∘ ( ( 𝐺 ∩ I ) ∪ ( 𝐺 ∖ I ) ) ) = ( ( 𝐹 ∘ ( 𝐺 ∩ I ) ) ∪ ( 𝐹 ∘ ( 𝐺 ∖ I ) ) ) | |
| 4 | 2 3 | eqtr3i | ⊢ ( 𝐹 ∘ 𝐺 ) = ( ( 𝐹 ∘ ( 𝐺 ∩ I ) ) ∪ ( 𝐹 ∘ ( 𝐺 ∖ I ) ) ) |
| 5 | 4 | difeq1i | ⊢ ( ( 𝐹 ∘ 𝐺 ) ∖ I ) = ( ( ( 𝐹 ∘ ( 𝐺 ∩ I ) ) ∪ ( 𝐹 ∘ ( 𝐺 ∖ I ) ) ) ∖ I ) |
| 6 | difundir | ⊢ ( ( ( 𝐹 ∘ ( 𝐺 ∩ I ) ) ∪ ( 𝐹 ∘ ( 𝐺 ∖ I ) ) ) ∖ I ) = ( ( ( 𝐹 ∘ ( 𝐺 ∩ I ) ) ∖ I ) ∪ ( ( 𝐹 ∘ ( 𝐺 ∖ I ) ) ∖ I ) ) | |
| 7 | 5 6 | eqtri | ⊢ ( ( 𝐹 ∘ 𝐺 ) ∖ I ) = ( ( ( 𝐹 ∘ ( 𝐺 ∩ I ) ) ∖ I ) ∪ ( ( 𝐹 ∘ ( 𝐺 ∖ I ) ) ∖ I ) ) |
| 8 | 7 | dmeqi | ⊢ dom ( ( 𝐹 ∘ 𝐺 ) ∖ I ) = dom ( ( ( 𝐹 ∘ ( 𝐺 ∩ I ) ) ∖ I ) ∪ ( ( 𝐹 ∘ ( 𝐺 ∖ I ) ) ∖ I ) ) |
| 9 | dmun | ⊢ dom ( ( ( 𝐹 ∘ ( 𝐺 ∩ I ) ) ∖ I ) ∪ ( ( 𝐹 ∘ ( 𝐺 ∖ I ) ) ∖ I ) ) = ( dom ( ( 𝐹 ∘ ( 𝐺 ∩ I ) ) ∖ I ) ∪ dom ( ( 𝐹 ∘ ( 𝐺 ∖ I ) ) ∖ I ) ) | |
| 10 | 8 9 | eqtri | ⊢ dom ( ( 𝐹 ∘ 𝐺 ) ∖ I ) = ( dom ( ( 𝐹 ∘ ( 𝐺 ∩ I ) ) ∖ I ) ∪ dom ( ( 𝐹 ∘ ( 𝐺 ∖ I ) ) ∖ I ) ) |
| 11 | inss2 | ⊢ ( 𝐺 ∩ I ) ⊆ I | |
| 12 | coss2 | ⊢ ( ( 𝐺 ∩ I ) ⊆ I → ( 𝐹 ∘ ( 𝐺 ∩ I ) ) ⊆ ( 𝐹 ∘ I ) ) | |
| 13 | 11 12 | ax-mp | ⊢ ( 𝐹 ∘ ( 𝐺 ∩ I ) ) ⊆ ( 𝐹 ∘ I ) |
| 14 | cocnvcnv1 | ⊢ ( ◡ ◡ 𝐹 ∘ I ) = ( 𝐹 ∘ I ) | |
| 15 | relcnv | ⊢ Rel ◡ ◡ 𝐹 | |
| 16 | coi1 | ⊢ ( Rel ◡ ◡ 𝐹 → ( ◡ ◡ 𝐹 ∘ I ) = ◡ ◡ 𝐹 ) | |
| 17 | 15 16 | ax-mp | ⊢ ( ◡ ◡ 𝐹 ∘ I ) = ◡ ◡ 𝐹 |
| 18 | 14 17 | eqtr3i | ⊢ ( 𝐹 ∘ I ) = ◡ ◡ 𝐹 |
| 19 | cnvcnvss | ⊢ ◡ ◡ 𝐹 ⊆ 𝐹 | |
| 20 | 18 19 | eqsstri | ⊢ ( 𝐹 ∘ I ) ⊆ 𝐹 |
| 21 | 13 20 | sstri | ⊢ ( 𝐹 ∘ ( 𝐺 ∩ I ) ) ⊆ 𝐹 |
| 22 | ssdif | ⊢ ( ( 𝐹 ∘ ( 𝐺 ∩ I ) ) ⊆ 𝐹 → ( ( 𝐹 ∘ ( 𝐺 ∩ I ) ) ∖ I ) ⊆ ( 𝐹 ∖ I ) ) | |
| 23 | dmss | ⊢ ( ( ( 𝐹 ∘ ( 𝐺 ∩ I ) ) ∖ I ) ⊆ ( 𝐹 ∖ I ) → dom ( ( 𝐹 ∘ ( 𝐺 ∩ I ) ) ∖ I ) ⊆ dom ( 𝐹 ∖ I ) ) | |
| 24 | 21 22 23 | mp2b | ⊢ dom ( ( 𝐹 ∘ ( 𝐺 ∩ I ) ) ∖ I ) ⊆ dom ( 𝐹 ∖ I ) |
| 25 | difss | ⊢ ( ( 𝐹 ∘ ( 𝐺 ∖ I ) ) ∖ I ) ⊆ ( 𝐹 ∘ ( 𝐺 ∖ I ) ) | |
| 26 | dmss | ⊢ ( ( ( 𝐹 ∘ ( 𝐺 ∖ I ) ) ∖ I ) ⊆ ( 𝐹 ∘ ( 𝐺 ∖ I ) ) → dom ( ( 𝐹 ∘ ( 𝐺 ∖ I ) ) ∖ I ) ⊆ dom ( 𝐹 ∘ ( 𝐺 ∖ I ) ) ) | |
| 27 | 25 26 | ax-mp | ⊢ dom ( ( 𝐹 ∘ ( 𝐺 ∖ I ) ) ∖ I ) ⊆ dom ( 𝐹 ∘ ( 𝐺 ∖ I ) ) |
| 28 | dmcoss | ⊢ dom ( 𝐹 ∘ ( 𝐺 ∖ I ) ) ⊆ dom ( 𝐺 ∖ I ) | |
| 29 | 27 28 | sstri | ⊢ dom ( ( 𝐹 ∘ ( 𝐺 ∖ I ) ) ∖ I ) ⊆ dom ( 𝐺 ∖ I ) |
| 30 | unss12 | ⊢ ( ( dom ( ( 𝐹 ∘ ( 𝐺 ∩ I ) ) ∖ I ) ⊆ dom ( 𝐹 ∖ I ) ∧ dom ( ( 𝐹 ∘ ( 𝐺 ∖ I ) ) ∖ I ) ⊆ dom ( 𝐺 ∖ I ) ) → ( dom ( ( 𝐹 ∘ ( 𝐺 ∩ I ) ) ∖ I ) ∪ dom ( ( 𝐹 ∘ ( 𝐺 ∖ I ) ) ∖ I ) ) ⊆ ( dom ( 𝐹 ∖ I ) ∪ dom ( 𝐺 ∖ I ) ) ) | |
| 31 | 24 29 30 | mp2an | ⊢ ( dom ( ( 𝐹 ∘ ( 𝐺 ∩ I ) ) ∖ I ) ∪ dom ( ( 𝐹 ∘ ( 𝐺 ∖ I ) ) ∖ I ) ) ⊆ ( dom ( 𝐹 ∖ I ) ∪ dom ( 𝐺 ∖ I ) ) |
| 32 | 10 31 | eqsstri | ⊢ dom ( ( 𝐹 ∘ 𝐺 ) ∖ I ) ⊆ ( dom ( 𝐹 ∖ I ) ∪ dom ( 𝐺 ∖ I ) ) |