This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Utility theorem: reverse closure for any structure defined as a function. (Contributed by Stefan O'Rear, 24-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | elbasfv.s | ⊢ 𝑆 = ( 𝐹 ‘ 𝑍 ) | |
| elbasfv.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | ||
| Assertion | elbasfv | ⊢ ( 𝑋 ∈ 𝐵 → 𝑍 ∈ V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elbasfv.s | ⊢ 𝑆 = ( 𝐹 ‘ 𝑍 ) | |
| 2 | elbasfv.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | |
| 3 | n0i | ⊢ ( 𝑋 ∈ 𝐵 → ¬ 𝐵 = ∅ ) | |
| 4 | fvprc | ⊢ ( ¬ 𝑍 ∈ V → ( 𝐹 ‘ 𝑍 ) = ∅ ) | |
| 5 | 1 4 | eqtrid | ⊢ ( ¬ 𝑍 ∈ V → 𝑆 = ∅ ) |
| 6 | 5 | fveq2d | ⊢ ( ¬ 𝑍 ∈ V → ( Base ‘ 𝑆 ) = ( Base ‘ ∅ ) ) |
| 7 | base0 | ⊢ ∅ = ( Base ‘ ∅ ) | |
| 8 | 6 2 7 | 3eqtr4g | ⊢ ( ¬ 𝑍 ∈ V → 𝐵 = ∅ ) |
| 9 | 3 8 | nsyl2 | ⊢ ( 𝑋 ∈ 𝐵 → 𝑍 ∈ V ) |