This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A transposition function is an involution. (Contributed by Stefan O'Rear, 22-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pmtrrn.t | ⊢ 𝑇 = ( pmTrsp ‘ 𝐷 ) | |
| pmtrrn.r | ⊢ 𝑅 = ran 𝑇 | ||
| Assertion | pmtrfinv | ⊢ ( 𝐹 ∈ 𝑅 → ( 𝐹 ∘ 𝐹 ) = ( I ↾ 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pmtrrn.t | ⊢ 𝑇 = ( pmTrsp ‘ 𝐷 ) | |
| 2 | pmtrrn.r | ⊢ 𝑅 = ran 𝑇 | |
| 3 | eqid | ⊢ dom ( 𝐹 ∖ I ) = dom ( 𝐹 ∖ I ) | |
| 4 | 1 2 3 | pmtrfrn | ⊢ ( 𝐹 ∈ 𝑅 → ( ( 𝐷 ∈ V ∧ dom ( 𝐹 ∖ I ) ⊆ 𝐷 ∧ dom ( 𝐹 ∖ I ) ≈ 2o ) ∧ 𝐹 = ( 𝑇 ‘ dom ( 𝐹 ∖ I ) ) ) ) |
| 5 | 4 | simpld | ⊢ ( 𝐹 ∈ 𝑅 → ( 𝐷 ∈ V ∧ dom ( 𝐹 ∖ I ) ⊆ 𝐷 ∧ dom ( 𝐹 ∖ I ) ≈ 2o ) ) |
| 6 | 1 | pmtrf | ⊢ ( ( 𝐷 ∈ V ∧ dom ( 𝐹 ∖ I ) ⊆ 𝐷 ∧ dom ( 𝐹 ∖ I ) ≈ 2o ) → ( 𝑇 ‘ dom ( 𝐹 ∖ I ) ) : 𝐷 ⟶ 𝐷 ) |
| 7 | 5 6 | syl | ⊢ ( 𝐹 ∈ 𝑅 → ( 𝑇 ‘ dom ( 𝐹 ∖ I ) ) : 𝐷 ⟶ 𝐷 ) |
| 8 | 4 | simprd | ⊢ ( 𝐹 ∈ 𝑅 → 𝐹 = ( 𝑇 ‘ dom ( 𝐹 ∖ I ) ) ) |
| 9 | 8 | feq1d | ⊢ ( 𝐹 ∈ 𝑅 → ( 𝐹 : 𝐷 ⟶ 𝐷 ↔ ( 𝑇 ‘ dom ( 𝐹 ∖ I ) ) : 𝐷 ⟶ 𝐷 ) ) |
| 10 | 7 9 | mpbird | ⊢ ( 𝐹 ∈ 𝑅 → 𝐹 : 𝐷 ⟶ 𝐷 ) |
| 11 | fco | ⊢ ( ( 𝐹 : 𝐷 ⟶ 𝐷 ∧ 𝐹 : 𝐷 ⟶ 𝐷 ) → ( 𝐹 ∘ 𝐹 ) : 𝐷 ⟶ 𝐷 ) | |
| 12 | 11 | anidms | ⊢ ( 𝐹 : 𝐷 ⟶ 𝐷 → ( 𝐹 ∘ 𝐹 ) : 𝐷 ⟶ 𝐷 ) |
| 13 | ffn | ⊢ ( ( 𝐹 ∘ 𝐹 ) : 𝐷 ⟶ 𝐷 → ( 𝐹 ∘ 𝐹 ) Fn 𝐷 ) | |
| 14 | 10 12 13 | 3syl | ⊢ ( 𝐹 ∈ 𝑅 → ( 𝐹 ∘ 𝐹 ) Fn 𝐷 ) |
| 15 | fnresi | ⊢ ( I ↾ 𝐷 ) Fn 𝐷 | |
| 16 | 15 | a1i | ⊢ ( 𝐹 ∈ 𝑅 → ( I ↾ 𝐷 ) Fn 𝐷 ) |
| 17 | 1 2 3 | pmtrffv | ⊢ ( ( 𝐹 ∈ 𝑅 ∧ 𝑥 ∈ 𝐷 ) → ( 𝐹 ‘ 𝑥 ) = if ( 𝑥 ∈ dom ( 𝐹 ∖ I ) , ∪ ( dom ( 𝐹 ∖ I ) ∖ { 𝑥 } ) , 𝑥 ) ) |
| 18 | iftrue | ⊢ ( 𝑥 ∈ dom ( 𝐹 ∖ I ) → if ( 𝑥 ∈ dom ( 𝐹 ∖ I ) , ∪ ( dom ( 𝐹 ∖ I ) ∖ { 𝑥 } ) , 𝑥 ) = ∪ ( dom ( 𝐹 ∖ I ) ∖ { 𝑥 } ) ) | |
| 19 | 17 18 | sylan9eq | ⊢ ( ( ( 𝐹 ∈ 𝑅 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑥 ∈ dom ( 𝐹 ∖ I ) ) → ( 𝐹 ‘ 𝑥 ) = ∪ ( dom ( 𝐹 ∖ I ) ∖ { 𝑥 } ) ) |
| 20 | 19 | fveq2d | ⊢ ( ( ( 𝐹 ∈ 𝑅 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑥 ∈ dom ( 𝐹 ∖ I ) ) → ( 𝐹 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( 𝐹 ‘ ∪ ( dom ( 𝐹 ∖ I ) ∖ { 𝑥 } ) ) ) |
| 21 | simpll | ⊢ ( ( ( 𝐹 ∈ 𝑅 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑥 ∈ dom ( 𝐹 ∖ I ) ) → 𝐹 ∈ 𝑅 ) | |
| 22 | 5 | simp2d | ⊢ ( 𝐹 ∈ 𝑅 → dom ( 𝐹 ∖ I ) ⊆ 𝐷 ) |
| 23 | 22 | ad2antrr | ⊢ ( ( ( 𝐹 ∈ 𝑅 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑥 ∈ dom ( 𝐹 ∖ I ) ) → dom ( 𝐹 ∖ I ) ⊆ 𝐷 ) |
| 24 | 1onn | ⊢ 1o ∈ ω | |
| 25 | 5 | simp3d | ⊢ ( 𝐹 ∈ 𝑅 → dom ( 𝐹 ∖ I ) ≈ 2o ) |
| 26 | df-2o | ⊢ 2o = suc 1o | |
| 27 | 25 26 | breqtrdi | ⊢ ( 𝐹 ∈ 𝑅 → dom ( 𝐹 ∖ I ) ≈ suc 1o ) |
| 28 | 27 | ad2antrr | ⊢ ( ( ( 𝐹 ∈ 𝑅 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑥 ∈ dom ( 𝐹 ∖ I ) ) → dom ( 𝐹 ∖ I ) ≈ suc 1o ) |
| 29 | simpr | ⊢ ( ( ( 𝐹 ∈ 𝑅 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑥 ∈ dom ( 𝐹 ∖ I ) ) → 𝑥 ∈ dom ( 𝐹 ∖ I ) ) | |
| 30 | dif1ennn | ⊢ ( ( 1o ∈ ω ∧ dom ( 𝐹 ∖ I ) ≈ suc 1o ∧ 𝑥 ∈ dom ( 𝐹 ∖ I ) ) → ( dom ( 𝐹 ∖ I ) ∖ { 𝑥 } ) ≈ 1o ) | |
| 31 | 24 28 29 30 | mp3an2i | ⊢ ( ( ( 𝐹 ∈ 𝑅 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑥 ∈ dom ( 𝐹 ∖ I ) ) → ( dom ( 𝐹 ∖ I ) ∖ { 𝑥 } ) ≈ 1o ) |
| 32 | en1uniel | ⊢ ( ( dom ( 𝐹 ∖ I ) ∖ { 𝑥 } ) ≈ 1o → ∪ ( dom ( 𝐹 ∖ I ) ∖ { 𝑥 } ) ∈ ( dom ( 𝐹 ∖ I ) ∖ { 𝑥 } ) ) | |
| 33 | 31 32 | syl | ⊢ ( ( ( 𝐹 ∈ 𝑅 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑥 ∈ dom ( 𝐹 ∖ I ) ) → ∪ ( dom ( 𝐹 ∖ I ) ∖ { 𝑥 } ) ∈ ( dom ( 𝐹 ∖ I ) ∖ { 𝑥 } ) ) |
| 34 | 33 | eldifad | ⊢ ( ( ( 𝐹 ∈ 𝑅 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑥 ∈ dom ( 𝐹 ∖ I ) ) → ∪ ( dom ( 𝐹 ∖ I ) ∖ { 𝑥 } ) ∈ dom ( 𝐹 ∖ I ) ) |
| 35 | 23 34 | sseldd | ⊢ ( ( ( 𝐹 ∈ 𝑅 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑥 ∈ dom ( 𝐹 ∖ I ) ) → ∪ ( dom ( 𝐹 ∖ I ) ∖ { 𝑥 } ) ∈ 𝐷 ) |
| 36 | 1 2 3 | pmtrffv | ⊢ ( ( 𝐹 ∈ 𝑅 ∧ ∪ ( dom ( 𝐹 ∖ I ) ∖ { 𝑥 } ) ∈ 𝐷 ) → ( 𝐹 ‘ ∪ ( dom ( 𝐹 ∖ I ) ∖ { 𝑥 } ) ) = if ( ∪ ( dom ( 𝐹 ∖ I ) ∖ { 𝑥 } ) ∈ dom ( 𝐹 ∖ I ) , ∪ ( dom ( 𝐹 ∖ I ) ∖ { ∪ ( dom ( 𝐹 ∖ I ) ∖ { 𝑥 } ) } ) , ∪ ( dom ( 𝐹 ∖ I ) ∖ { 𝑥 } ) ) ) |
| 37 | 21 35 36 | syl2anc | ⊢ ( ( ( 𝐹 ∈ 𝑅 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑥 ∈ dom ( 𝐹 ∖ I ) ) → ( 𝐹 ‘ ∪ ( dom ( 𝐹 ∖ I ) ∖ { 𝑥 } ) ) = if ( ∪ ( dom ( 𝐹 ∖ I ) ∖ { 𝑥 } ) ∈ dom ( 𝐹 ∖ I ) , ∪ ( dom ( 𝐹 ∖ I ) ∖ { ∪ ( dom ( 𝐹 ∖ I ) ∖ { 𝑥 } ) } ) , ∪ ( dom ( 𝐹 ∖ I ) ∖ { 𝑥 } ) ) ) |
| 38 | iftrue | ⊢ ( ∪ ( dom ( 𝐹 ∖ I ) ∖ { 𝑥 } ) ∈ dom ( 𝐹 ∖ I ) → if ( ∪ ( dom ( 𝐹 ∖ I ) ∖ { 𝑥 } ) ∈ dom ( 𝐹 ∖ I ) , ∪ ( dom ( 𝐹 ∖ I ) ∖ { ∪ ( dom ( 𝐹 ∖ I ) ∖ { 𝑥 } ) } ) , ∪ ( dom ( 𝐹 ∖ I ) ∖ { 𝑥 } ) ) = ∪ ( dom ( 𝐹 ∖ I ) ∖ { ∪ ( dom ( 𝐹 ∖ I ) ∖ { 𝑥 } ) } ) ) | |
| 39 | 34 38 | syl | ⊢ ( ( ( 𝐹 ∈ 𝑅 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑥 ∈ dom ( 𝐹 ∖ I ) ) → if ( ∪ ( dom ( 𝐹 ∖ I ) ∖ { 𝑥 } ) ∈ dom ( 𝐹 ∖ I ) , ∪ ( dom ( 𝐹 ∖ I ) ∖ { ∪ ( dom ( 𝐹 ∖ I ) ∖ { 𝑥 } ) } ) , ∪ ( dom ( 𝐹 ∖ I ) ∖ { 𝑥 } ) ) = ∪ ( dom ( 𝐹 ∖ I ) ∖ { ∪ ( dom ( 𝐹 ∖ I ) ∖ { 𝑥 } ) } ) ) |
| 40 | 25 | adantr | ⊢ ( ( 𝐹 ∈ 𝑅 ∧ 𝑥 ∈ 𝐷 ) → dom ( 𝐹 ∖ I ) ≈ 2o ) |
| 41 | en2other2 | ⊢ ( ( 𝑥 ∈ dom ( 𝐹 ∖ I ) ∧ dom ( 𝐹 ∖ I ) ≈ 2o ) → ∪ ( dom ( 𝐹 ∖ I ) ∖ { ∪ ( dom ( 𝐹 ∖ I ) ∖ { 𝑥 } ) } ) = 𝑥 ) | |
| 42 | 41 | ancoms | ⊢ ( ( dom ( 𝐹 ∖ I ) ≈ 2o ∧ 𝑥 ∈ dom ( 𝐹 ∖ I ) ) → ∪ ( dom ( 𝐹 ∖ I ) ∖ { ∪ ( dom ( 𝐹 ∖ I ) ∖ { 𝑥 } ) } ) = 𝑥 ) |
| 43 | 40 42 | sylan | ⊢ ( ( ( 𝐹 ∈ 𝑅 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑥 ∈ dom ( 𝐹 ∖ I ) ) → ∪ ( dom ( 𝐹 ∖ I ) ∖ { ∪ ( dom ( 𝐹 ∖ I ) ∖ { 𝑥 } ) } ) = 𝑥 ) |
| 44 | 39 43 | eqtrd | ⊢ ( ( ( 𝐹 ∈ 𝑅 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑥 ∈ dom ( 𝐹 ∖ I ) ) → if ( ∪ ( dom ( 𝐹 ∖ I ) ∖ { 𝑥 } ) ∈ dom ( 𝐹 ∖ I ) , ∪ ( dom ( 𝐹 ∖ I ) ∖ { ∪ ( dom ( 𝐹 ∖ I ) ∖ { 𝑥 } ) } ) , ∪ ( dom ( 𝐹 ∖ I ) ∖ { 𝑥 } ) ) = 𝑥 ) |
| 45 | 37 44 | eqtrd | ⊢ ( ( ( 𝐹 ∈ 𝑅 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑥 ∈ dom ( 𝐹 ∖ I ) ) → ( 𝐹 ‘ ∪ ( dom ( 𝐹 ∖ I ) ∖ { 𝑥 } ) ) = 𝑥 ) |
| 46 | 20 45 | eqtrd | ⊢ ( ( ( 𝐹 ∈ 𝑅 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑥 ∈ dom ( 𝐹 ∖ I ) ) → ( 𝐹 ‘ ( 𝐹 ‘ 𝑥 ) ) = 𝑥 ) |
| 47 | 10 | ffnd | ⊢ ( 𝐹 ∈ 𝑅 → 𝐹 Fn 𝐷 ) |
| 48 | fnelnfp | ⊢ ( ( 𝐹 Fn 𝐷 ∧ 𝑥 ∈ 𝐷 ) → ( 𝑥 ∈ dom ( 𝐹 ∖ I ) ↔ ( 𝐹 ‘ 𝑥 ) ≠ 𝑥 ) ) | |
| 49 | 47 48 | sylan | ⊢ ( ( 𝐹 ∈ 𝑅 ∧ 𝑥 ∈ 𝐷 ) → ( 𝑥 ∈ dom ( 𝐹 ∖ I ) ↔ ( 𝐹 ‘ 𝑥 ) ≠ 𝑥 ) ) |
| 50 | 49 | necon2bbid | ⊢ ( ( 𝐹 ∈ 𝑅 ∧ 𝑥 ∈ 𝐷 ) → ( ( 𝐹 ‘ 𝑥 ) = 𝑥 ↔ ¬ 𝑥 ∈ dom ( 𝐹 ∖ I ) ) ) |
| 51 | 50 | biimpar | ⊢ ( ( ( 𝐹 ∈ 𝑅 ∧ 𝑥 ∈ 𝐷 ) ∧ ¬ 𝑥 ∈ dom ( 𝐹 ∖ I ) ) → ( 𝐹 ‘ 𝑥 ) = 𝑥 ) |
| 52 | fveq2 | ⊢ ( ( 𝐹 ‘ 𝑥 ) = 𝑥 → ( 𝐹 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( 𝐹 ‘ 𝑥 ) ) | |
| 53 | id | ⊢ ( ( 𝐹 ‘ 𝑥 ) = 𝑥 → ( 𝐹 ‘ 𝑥 ) = 𝑥 ) | |
| 54 | 52 53 | eqtrd | ⊢ ( ( 𝐹 ‘ 𝑥 ) = 𝑥 → ( 𝐹 ‘ ( 𝐹 ‘ 𝑥 ) ) = 𝑥 ) |
| 55 | 51 54 | syl | ⊢ ( ( ( 𝐹 ∈ 𝑅 ∧ 𝑥 ∈ 𝐷 ) ∧ ¬ 𝑥 ∈ dom ( 𝐹 ∖ I ) ) → ( 𝐹 ‘ ( 𝐹 ‘ 𝑥 ) ) = 𝑥 ) |
| 56 | 46 55 | pm2.61dan | ⊢ ( ( 𝐹 ∈ 𝑅 ∧ 𝑥 ∈ 𝐷 ) → ( 𝐹 ‘ ( 𝐹 ‘ 𝑥 ) ) = 𝑥 ) |
| 57 | fvco2 | ⊢ ( ( 𝐹 Fn 𝐷 ∧ 𝑥 ∈ 𝐷 ) → ( ( 𝐹 ∘ 𝐹 ) ‘ 𝑥 ) = ( 𝐹 ‘ ( 𝐹 ‘ 𝑥 ) ) ) | |
| 58 | 47 57 | sylan | ⊢ ( ( 𝐹 ∈ 𝑅 ∧ 𝑥 ∈ 𝐷 ) → ( ( 𝐹 ∘ 𝐹 ) ‘ 𝑥 ) = ( 𝐹 ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
| 59 | fvresi | ⊢ ( 𝑥 ∈ 𝐷 → ( ( I ↾ 𝐷 ) ‘ 𝑥 ) = 𝑥 ) | |
| 60 | 59 | adantl | ⊢ ( ( 𝐹 ∈ 𝑅 ∧ 𝑥 ∈ 𝐷 ) → ( ( I ↾ 𝐷 ) ‘ 𝑥 ) = 𝑥 ) |
| 61 | 56 58 60 | 3eqtr4d | ⊢ ( ( 𝐹 ∈ 𝑅 ∧ 𝑥 ∈ 𝐷 ) → ( ( 𝐹 ∘ 𝐹 ) ‘ 𝑥 ) = ( ( I ↾ 𝐷 ) ‘ 𝑥 ) ) |
| 62 | 14 16 61 | eqfnfvd | ⊢ ( 𝐹 ∈ 𝑅 → ( 𝐹 ∘ 𝐹 ) = ( I ↾ 𝐷 ) ) |