This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a transposition of two given points, each maps to the other. (Contributed by Stefan O'Rear, 25-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | pmtrfval.t | ⊢ 𝑇 = ( pmTrsp ‘ 𝐷 ) | |
| Assertion | pmtrprfv | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑋 ≠ 𝑌 ) ) → ( ( 𝑇 ‘ { 𝑋 , 𝑌 } ) ‘ 𝑋 ) = 𝑌 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pmtrfval.t | ⊢ 𝑇 = ( pmTrsp ‘ 𝐷 ) | |
| 2 | simpl | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑋 ≠ 𝑌 ) ) → 𝐷 ∈ 𝑉 ) | |
| 3 | simpr1 | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑋 ≠ 𝑌 ) ) → 𝑋 ∈ 𝐷 ) | |
| 4 | simpr2 | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑋 ≠ 𝑌 ) ) → 𝑌 ∈ 𝐷 ) | |
| 5 | 3 4 | prssd | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑋 ≠ 𝑌 ) ) → { 𝑋 , 𝑌 } ⊆ 𝐷 ) |
| 6 | enpr2 | ⊢ ( ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑋 ≠ 𝑌 ) → { 𝑋 , 𝑌 } ≈ 2o ) | |
| 7 | 6 | adantl | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑋 ≠ 𝑌 ) ) → { 𝑋 , 𝑌 } ≈ 2o ) |
| 8 | 1 | pmtrfv | ⊢ ( ( ( 𝐷 ∈ 𝑉 ∧ { 𝑋 , 𝑌 } ⊆ 𝐷 ∧ { 𝑋 , 𝑌 } ≈ 2o ) ∧ 𝑋 ∈ 𝐷 ) → ( ( 𝑇 ‘ { 𝑋 , 𝑌 } ) ‘ 𝑋 ) = if ( 𝑋 ∈ { 𝑋 , 𝑌 } , ∪ ( { 𝑋 , 𝑌 } ∖ { 𝑋 } ) , 𝑋 ) ) |
| 9 | 2 5 7 3 8 | syl31anc | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑋 ≠ 𝑌 ) ) → ( ( 𝑇 ‘ { 𝑋 , 𝑌 } ) ‘ 𝑋 ) = if ( 𝑋 ∈ { 𝑋 , 𝑌 } , ∪ ( { 𝑋 , 𝑌 } ∖ { 𝑋 } ) , 𝑋 ) ) |
| 10 | prid1g | ⊢ ( 𝑋 ∈ 𝐷 → 𝑋 ∈ { 𝑋 , 𝑌 } ) | |
| 11 | 3 10 | syl | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑋 ≠ 𝑌 ) ) → 𝑋 ∈ { 𝑋 , 𝑌 } ) |
| 12 | 11 | iftrued | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑋 ≠ 𝑌 ) ) → if ( 𝑋 ∈ { 𝑋 , 𝑌 } , ∪ ( { 𝑋 , 𝑌 } ∖ { 𝑋 } ) , 𝑋 ) = ∪ ( { 𝑋 , 𝑌 } ∖ { 𝑋 } ) ) |
| 13 | difprsnss | ⊢ ( { 𝑋 , 𝑌 } ∖ { 𝑋 } ) ⊆ { 𝑌 } | |
| 14 | 13 | a1i | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑋 ≠ 𝑌 ) ) → ( { 𝑋 , 𝑌 } ∖ { 𝑋 } ) ⊆ { 𝑌 } ) |
| 15 | prid2g | ⊢ ( 𝑌 ∈ 𝐷 → 𝑌 ∈ { 𝑋 , 𝑌 } ) | |
| 16 | 4 15 | syl | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑋 ≠ 𝑌 ) ) → 𝑌 ∈ { 𝑋 , 𝑌 } ) |
| 17 | simpr3 | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑋 ≠ 𝑌 ) ) → 𝑋 ≠ 𝑌 ) | |
| 18 | 17 | necomd | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑋 ≠ 𝑌 ) ) → 𝑌 ≠ 𝑋 ) |
| 19 | eldifsn | ⊢ ( 𝑌 ∈ ( { 𝑋 , 𝑌 } ∖ { 𝑋 } ) ↔ ( 𝑌 ∈ { 𝑋 , 𝑌 } ∧ 𝑌 ≠ 𝑋 ) ) | |
| 20 | 16 18 19 | sylanbrc | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑋 ≠ 𝑌 ) ) → 𝑌 ∈ ( { 𝑋 , 𝑌 } ∖ { 𝑋 } ) ) |
| 21 | 20 | snssd | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑋 ≠ 𝑌 ) ) → { 𝑌 } ⊆ ( { 𝑋 , 𝑌 } ∖ { 𝑋 } ) ) |
| 22 | 14 21 | eqssd | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑋 ≠ 𝑌 ) ) → ( { 𝑋 , 𝑌 } ∖ { 𝑋 } ) = { 𝑌 } ) |
| 23 | 22 | unieqd | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑋 ≠ 𝑌 ) ) → ∪ ( { 𝑋 , 𝑌 } ∖ { 𝑋 } ) = ∪ { 𝑌 } ) |
| 24 | unisng | ⊢ ( 𝑌 ∈ 𝐷 → ∪ { 𝑌 } = 𝑌 ) | |
| 25 | 4 24 | syl | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑋 ≠ 𝑌 ) ) → ∪ { 𝑌 } = 𝑌 ) |
| 26 | 23 25 | eqtrd | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑋 ≠ 𝑌 ) ) → ∪ ( { 𝑋 , 𝑌 } ∖ { 𝑋 } ) = 𝑌 ) |
| 27 | 12 26 | eqtrd | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑋 ≠ 𝑌 ) ) → if ( 𝑋 ∈ { 𝑋 , 𝑌 } , ∪ ( { 𝑋 , 𝑌 } ∖ { 𝑋 } ) , 𝑋 ) = 𝑌 ) |
| 28 | 9 27 | eqtrd | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑋 ≠ 𝑌 ) ) → ( ( 𝑇 ‘ { 𝑋 , 𝑌 } ) ‘ 𝑋 ) = 𝑌 ) |