This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A permutation of any class moves a point which is moved to a different point which is moved. (Contributed by Stefan O'Rear, 22-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | f1omvdmvd | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝑋 ∈ dom ( 𝐹 ∖ I ) ) → ( 𝐹 ‘ 𝑋 ) ∈ ( dom ( 𝐹 ∖ I ) ∖ { 𝑋 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝑋 ∈ dom ( 𝐹 ∖ I ) ) → 𝑋 ∈ dom ( 𝐹 ∖ I ) ) | |
| 2 | f1ofn | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 → 𝐹 Fn 𝐴 ) | |
| 3 | difss | ⊢ ( 𝐹 ∖ I ) ⊆ 𝐹 | |
| 4 | dmss | ⊢ ( ( 𝐹 ∖ I ) ⊆ 𝐹 → dom ( 𝐹 ∖ I ) ⊆ dom 𝐹 ) | |
| 5 | 3 4 | ax-mp | ⊢ dom ( 𝐹 ∖ I ) ⊆ dom 𝐹 |
| 6 | f1odm | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 → dom 𝐹 = 𝐴 ) | |
| 7 | 5 6 | sseqtrid | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 → dom ( 𝐹 ∖ I ) ⊆ 𝐴 ) |
| 8 | 7 | sselda | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝑋 ∈ dom ( 𝐹 ∖ I ) ) → 𝑋 ∈ 𝐴 ) |
| 9 | fnelnfp | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ( 𝑋 ∈ dom ( 𝐹 ∖ I ) ↔ ( 𝐹 ‘ 𝑋 ) ≠ 𝑋 ) ) | |
| 10 | 2 8 9 | syl2an2r | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝑋 ∈ dom ( 𝐹 ∖ I ) ) → ( 𝑋 ∈ dom ( 𝐹 ∖ I ) ↔ ( 𝐹 ‘ 𝑋 ) ≠ 𝑋 ) ) |
| 11 | 1 10 | mpbid | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝑋 ∈ dom ( 𝐹 ∖ I ) ) → ( 𝐹 ‘ 𝑋 ) ≠ 𝑋 ) |
| 12 | f1of1 | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 → 𝐹 : 𝐴 –1-1→ 𝐴 ) | |
| 13 | 12 | adantr | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝑋 ∈ dom ( 𝐹 ∖ I ) ) → 𝐹 : 𝐴 –1-1→ 𝐴 ) |
| 14 | f1of | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 → 𝐹 : 𝐴 ⟶ 𝐴 ) | |
| 15 | 14 | adantr | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝑋 ∈ dom ( 𝐹 ∖ I ) ) → 𝐹 : 𝐴 ⟶ 𝐴 ) |
| 16 | 15 8 | ffvelcdmd | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝑋 ∈ dom ( 𝐹 ∖ I ) ) → ( 𝐹 ‘ 𝑋 ) ∈ 𝐴 ) |
| 17 | f1fveq | ⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐴 ∧ ( ( 𝐹 ‘ 𝑋 ) ∈ 𝐴 ∧ 𝑋 ∈ 𝐴 ) ) → ( ( 𝐹 ‘ ( 𝐹 ‘ 𝑋 ) ) = ( 𝐹 ‘ 𝑋 ) ↔ ( 𝐹 ‘ 𝑋 ) = 𝑋 ) ) | |
| 18 | 13 16 8 17 | syl12anc | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝑋 ∈ dom ( 𝐹 ∖ I ) ) → ( ( 𝐹 ‘ ( 𝐹 ‘ 𝑋 ) ) = ( 𝐹 ‘ 𝑋 ) ↔ ( 𝐹 ‘ 𝑋 ) = 𝑋 ) ) |
| 19 | 18 | necon3bid | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝑋 ∈ dom ( 𝐹 ∖ I ) ) → ( ( 𝐹 ‘ ( 𝐹 ‘ 𝑋 ) ) ≠ ( 𝐹 ‘ 𝑋 ) ↔ ( 𝐹 ‘ 𝑋 ) ≠ 𝑋 ) ) |
| 20 | 11 19 | mpbird | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝑋 ∈ dom ( 𝐹 ∖ I ) ) → ( 𝐹 ‘ ( 𝐹 ‘ 𝑋 ) ) ≠ ( 𝐹 ‘ 𝑋 ) ) |
| 21 | fnelnfp | ⊢ ( ( 𝐹 Fn 𝐴 ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑋 ) ∈ dom ( 𝐹 ∖ I ) ↔ ( 𝐹 ‘ ( 𝐹 ‘ 𝑋 ) ) ≠ ( 𝐹 ‘ 𝑋 ) ) ) | |
| 22 | 2 16 21 | syl2an2r | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝑋 ∈ dom ( 𝐹 ∖ I ) ) → ( ( 𝐹 ‘ 𝑋 ) ∈ dom ( 𝐹 ∖ I ) ↔ ( 𝐹 ‘ ( 𝐹 ‘ 𝑋 ) ) ≠ ( 𝐹 ‘ 𝑋 ) ) ) |
| 23 | 20 22 | mpbird | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝑋 ∈ dom ( 𝐹 ∖ I ) ) → ( 𝐹 ‘ 𝑋 ) ∈ dom ( 𝐹 ∖ I ) ) |
| 24 | eldifsn | ⊢ ( ( 𝐹 ‘ 𝑋 ) ∈ ( dom ( 𝐹 ∖ I ) ∖ { 𝑋 } ) ↔ ( ( 𝐹 ‘ 𝑋 ) ∈ dom ( 𝐹 ∖ I ) ∧ ( 𝐹 ‘ 𝑋 ) ≠ 𝑋 ) ) | |
| 25 | 23 11 24 | sylanbrc | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝑋 ∈ dom ( 𝐹 ∖ I ) ) → ( 𝐹 ‘ 𝑋 ) ∈ ( dom ( 𝐹 ∖ I ) ∖ { 𝑋 } ) ) |