This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Submonoids are closed under the monoid operation. (Contributed by Mario Carneiro, 10-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | submcl.p | ⊢ + = ( +g ‘ 𝑀 ) | |
| Assertion | submcl | ⊢ ( ( 𝑆 ∈ ( SubMnd ‘ 𝑀 ) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) → ( 𝑋 + 𝑌 ) ∈ 𝑆 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | submcl.p | ⊢ + = ( +g ‘ 𝑀 ) | |
| 2 | submrcl | ⊢ ( 𝑆 ∈ ( SubMnd ‘ 𝑀 ) → 𝑀 ∈ Mnd ) | |
| 3 | eqid | ⊢ ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 ) | |
| 4 | eqid | ⊢ ( 0g ‘ 𝑀 ) = ( 0g ‘ 𝑀 ) | |
| 5 | 3 4 1 | issubm | ⊢ ( 𝑀 ∈ Mnd → ( 𝑆 ∈ ( SubMnd ‘ 𝑀 ) ↔ ( 𝑆 ⊆ ( Base ‘ 𝑀 ) ∧ ( 0g ‘ 𝑀 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ) ) ) |
| 6 | 2 5 | syl | ⊢ ( 𝑆 ∈ ( SubMnd ‘ 𝑀 ) → ( 𝑆 ∈ ( SubMnd ‘ 𝑀 ) ↔ ( 𝑆 ⊆ ( Base ‘ 𝑀 ) ∧ ( 0g ‘ 𝑀 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ) ) ) |
| 7 | 6 | ibi | ⊢ ( 𝑆 ∈ ( SubMnd ‘ 𝑀 ) → ( 𝑆 ⊆ ( Base ‘ 𝑀 ) ∧ ( 0g ‘ 𝑀 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ) ) |
| 8 | 7 | simp3d | ⊢ ( 𝑆 ∈ ( SubMnd ‘ 𝑀 ) → ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ) |
| 9 | ovrspc2v | ⊢ ( ( ( 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ) → ( 𝑋 + 𝑌 ) ∈ 𝑆 ) | |
| 10 | 8 9 | sylan2 | ⊢ ( ( ( 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) ∧ 𝑆 ∈ ( SubMnd ‘ 𝑀 ) ) → ( 𝑋 + 𝑌 ) ∈ 𝑆 ) |
| 11 | 10 | ancoms | ⊢ ( ( 𝑆 ∈ ( SubMnd ‘ 𝑀 ) ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) ) → ( 𝑋 + 𝑌 ) ∈ 𝑆 ) |
| 12 | 11 | 3impb | ⊢ ( ( 𝑆 ∈ ( SubMnd ‘ 𝑀 ) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) → ( 𝑋 + 𝑌 ) ∈ 𝑆 ) |