This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subclass inclusion with one element of the superclass missing is proper subclass inclusion. Deduction form of ssnelpss . (Contributed by David Moews, 1-May-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ssnelpssd.1 | ⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) | |
| ssnelpssd.2 | ⊢ ( 𝜑 → 𝐶 ∈ 𝐵 ) | ||
| ssnelpssd.3 | ⊢ ( 𝜑 → ¬ 𝐶 ∈ 𝐴 ) | ||
| Assertion | ssnelpssd | ⊢ ( 𝜑 → 𝐴 ⊊ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssnelpssd.1 | ⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) | |
| 2 | ssnelpssd.2 | ⊢ ( 𝜑 → 𝐶 ∈ 𝐵 ) | |
| 3 | ssnelpssd.3 | ⊢ ( 𝜑 → ¬ 𝐶 ∈ 𝐴 ) | |
| 4 | ssnelpss | ⊢ ( 𝐴 ⊆ 𝐵 → ( ( 𝐶 ∈ 𝐵 ∧ ¬ 𝐶 ∈ 𝐴 ) → 𝐴 ⊊ 𝐵 ) ) | |
| 5 | 1 4 | syl | ⊢ ( 𝜑 → ( ( 𝐶 ∈ 𝐵 ∧ ¬ 𝐶 ∈ 𝐴 ) → 𝐴 ⊊ 𝐵 ) ) |
| 6 | 2 3 5 | mp2and | ⊢ ( 𝜑 → 𝐴 ⊊ 𝐵 ) |