This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A transposition moves precisely the transposed points. (Contributed by Stefan O'Rear, 16-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | pmtrfval.t | ⊢ 𝑇 = ( pmTrsp ‘ 𝐷 ) | |
| Assertion | pmtrmvd | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) → dom ( ( 𝑇 ‘ 𝑃 ) ∖ I ) = 𝑃 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pmtrfval.t | ⊢ 𝑇 = ( pmTrsp ‘ 𝐷 ) | |
| 2 | 1 | pmtrf | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) → ( 𝑇 ‘ 𝑃 ) : 𝐷 ⟶ 𝐷 ) |
| 3 | ffn | ⊢ ( ( 𝑇 ‘ 𝑃 ) : 𝐷 ⟶ 𝐷 → ( 𝑇 ‘ 𝑃 ) Fn 𝐷 ) | |
| 4 | fndifnfp | ⊢ ( ( 𝑇 ‘ 𝑃 ) Fn 𝐷 → dom ( ( 𝑇 ‘ 𝑃 ) ∖ I ) = { 𝑧 ∈ 𝐷 ∣ ( ( 𝑇 ‘ 𝑃 ) ‘ 𝑧 ) ≠ 𝑧 } ) | |
| 5 | 2 3 4 | 3syl | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) → dom ( ( 𝑇 ‘ 𝑃 ) ∖ I ) = { 𝑧 ∈ 𝐷 ∣ ( ( 𝑇 ‘ 𝑃 ) ‘ 𝑧 ) ≠ 𝑧 } ) |
| 6 | 1 | pmtrfv | ⊢ ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) ∧ 𝑧 ∈ 𝐷 ) → ( ( 𝑇 ‘ 𝑃 ) ‘ 𝑧 ) = if ( 𝑧 ∈ 𝑃 , ∪ ( 𝑃 ∖ { 𝑧 } ) , 𝑧 ) ) |
| 7 | 6 | neeq1d | ⊢ ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) ∧ 𝑧 ∈ 𝐷 ) → ( ( ( 𝑇 ‘ 𝑃 ) ‘ 𝑧 ) ≠ 𝑧 ↔ if ( 𝑧 ∈ 𝑃 , ∪ ( 𝑃 ∖ { 𝑧 } ) , 𝑧 ) ≠ 𝑧 ) ) |
| 8 | iffalse | ⊢ ( ¬ 𝑧 ∈ 𝑃 → if ( 𝑧 ∈ 𝑃 , ∪ ( 𝑃 ∖ { 𝑧 } ) , 𝑧 ) = 𝑧 ) | |
| 9 | 8 | necon1ai | ⊢ ( if ( 𝑧 ∈ 𝑃 , ∪ ( 𝑃 ∖ { 𝑧 } ) , 𝑧 ) ≠ 𝑧 → 𝑧 ∈ 𝑃 ) |
| 10 | iftrue | ⊢ ( 𝑧 ∈ 𝑃 → if ( 𝑧 ∈ 𝑃 , ∪ ( 𝑃 ∖ { 𝑧 } ) , 𝑧 ) = ∪ ( 𝑃 ∖ { 𝑧 } ) ) | |
| 11 | 10 | adantl | ⊢ ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) ∧ 𝑧 ∈ 𝑃 ) → if ( 𝑧 ∈ 𝑃 , ∪ ( 𝑃 ∖ { 𝑧 } ) , 𝑧 ) = ∪ ( 𝑃 ∖ { 𝑧 } ) ) |
| 12 | 1onn | ⊢ 1o ∈ ω | |
| 13 | simpl3 | ⊢ ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) ∧ 𝑧 ∈ 𝑃 ) → 𝑃 ≈ 2o ) | |
| 14 | df-2o | ⊢ 2o = suc 1o | |
| 15 | 13 14 | breqtrdi | ⊢ ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) ∧ 𝑧 ∈ 𝑃 ) → 𝑃 ≈ suc 1o ) |
| 16 | simpr | ⊢ ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) ∧ 𝑧 ∈ 𝑃 ) → 𝑧 ∈ 𝑃 ) | |
| 17 | dif1ennn | ⊢ ( ( 1o ∈ ω ∧ 𝑃 ≈ suc 1o ∧ 𝑧 ∈ 𝑃 ) → ( 𝑃 ∖ { 𝑧 } ) ≈ 1o ) | |
| 18 | 12 15 16 17 | mp3an2i | ⊢ ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) ∧ 𝑧 ∈ 𝑃 ) → ( 𝑃 ∖ { 𝑧 } ) ≈ 1o ) |
| 19 | en1uniel | ⊢ ( ( 𝑃 ∖ { 𝑧 } ) ≈ 1o → ∪ ( 𝑃 ∖ { 𝑧 } ) ∈ ( 𝑃 ∖ { 𝑧 } ) ) | |
| 20 | eldifsni | ⊢ ( ∪ ( 𝑃 ∖ { 𝑧 } ) ∈ ( 𝑃 ∖ { 𝑧 } ) → ∪ ( 𝑃 ∖ { 𝑧 } ) ≠ 𝑧 ) | |
| 21 | 18 19 20 | 3syl | ⊢ ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) ∧ 𝑧 ∈ 𝑃 ) → ∪ ( 𝑃 ∖ { 𝑧 } ) ≠ 𝑧 ) |
| 22 | 11 21 | eqnetrd | ⊢ ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) ∧ 𝑧 ∈ 𝑃 ) → if ( 𝑧 ∈ 𝑃 , ∪ ( 𝑃 ∖ { 𝑧 } ) , 𝑧 ) ≠ 𝑧 ) |
| 23 | 22 | ex | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) → ( 𝑧 ∈ 𝑃 → if ( 𝑧 ∈ 𝑃 , ∪ ( 𝑃 ∖ { 𝑧 } ) , 𝑧 ) ≠ 𝑧 ) ) |
| 24 | 9 23 | impbid2 | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) → ( if ( 𝑧 ∈ 𝑃 , ∪ ( 𝑃 ∖ { 𝑧 } ) , 𝑧 ) ≠ 𝑧 ↔ 𝑧 ∈ 𝑃 ) ) |
| 25 | 24 | adantr | ⊢ ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) ∧ 𝑧 ∈ 𝐷 ) → ( if ( 𝑧 ∈ 𝑃 , ∪ ( 𝑃 ∖ { 𝑧 } ) , 𝑧 ) ≠ 𝑧 ↔ 𝑧 ∈ 𝑃 ) ) |
| 26 | 7 25 | bitrd | ⊢ ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) ∧ 𝑧 ∈ 𝐷 ) → ( ( ( 𝑇 ‘ 𝑃 ) ‘ 𝑧 ) ≠ 𝑧 ↔ 𝑧 ∈ 𝑃 ) ) |
| 27 | 26 | rabbidva | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) → { 𝑧 ∈ 𝐷 ∣ ( ( 𝑇 ‘ 𝑃 ) ‘ 𝑧 ) ≠ 𝑧 } = { 𝑧 ∈ 𝐷 ∣ 𝑧 ∈ 𝑃 } ) |
| 28 | incom | ⊢ ( 𝑃 ∩ 𝐷 ) = ( 𝐷 ∩ 𝑃 ) | |
| 29 | dfin5 | ⊢ ( 𝐷 ∩ 𝑃 ) = { 𝑧 ∈ 𝐷 ∣ 𝑧 ∈ 𝑃 } | |
| 30 | 28 29 | eqtri | ⊢ ( 𝑃 ∩ 𝐷 ) = { 𝑧 ∈ 𝐷 ∣ 𝑧 ∈ 𝑃 } |
| 31 | 27 30 | eqtr4di | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) → { 𝑧 ∈ 𝐷 ∣ ( ( 𝑇 ‘ 𝑃 ) ‘ 𝑧 ) ≠ 𝑧 } = ( 𝑃 ∩ 𝐷 ) ) |
| 32 | simp2 | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) → 𝑃 ⊆ 𝐷 ) | |
| 33 | dfss2 | ⊢ ( 𝑃 ⊆ 𝐷 ↔ ( 𝑃 ∩ 𝐷 ) = 𝑃 ) | |
| 34 | 32 33 | sylib | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) → ( 𝑃 ∩ 𝐷 ) = 𝑃 ) |
| 35 | 5 31 34 | 3eqtrd | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) → dom ( ( 𝑇 ‘ 𝑃 ) ∖ I ) = 𝑃 ) |