This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for rrncms . (Contributed by Jeff Madsen, 6-Jun-2014) (Revised by Mario Carneiro, 13-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rrnval.1 | ⊢ 𝑋 = ( ℝ ↑m 𝐼 ) | |
| rrndstprj1.1 | ⊢ 𝑀 = ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) | ||
| rrncms.3 | ⊢ 𝐽 = ( MetOpen ‘ ( ℝn ‘ 𝐼 ) ) | ||
| rrncms.4 | ⊢ ( 𝜑 → 𝐼 ∈ Fin ) | ||
| rrncms.5 | ⊢ ( 𝜑 → 𝐹 ∈ ( Cau ‘ ( ℝn ‘ 𝐼 ) ) ) | ||
| rrncms.6 | ⊢ ( 𝜑 → 𝐹 : ℕ ⟶ 𝑋 ) | ||
| rrncms.7 | ⊢ 𝑃 = ( 𝑚 ∈ 𝐼 ↦ ( ⇝ ‘ ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑚 ) ) ) ) | ||
| Assertion | rrncmslem | ⊢ ( 𝜑 → 𝐹 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rrnval.1 | ⊢ 𝑋 = ( ℝ ↑m 𝐼 ) | |
| 2 | rrndstprj1.1 | ⊢ 𝑀 = ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) | |
| 3 | rrncms.3 | ⊢ 𝐽 = ( MetOpen ‘ ( ℝn ‘ 𝐼 ) ) | |
| 4 | rrncms.4 | ⊢ ( 𝜑 → 𝐼 ∈ Fin ) | |
| 5 | rrncms.5 | ⊢ ( 𝜑 → 𝐹 ∈ ( Cau ‘ ( ℝn ‘ 𝐼 ) ) ) | |
| 6 | rrncms.6 | ⊢ ( 𝜑 → 𝐹 : ℕ ⟶ 𝑋 ) | |
| 7 | rrncms.7 | ⊢ 𝑃 = ( 𝑚 ∈ 𝐼 ↦ ( ⇝ ‘ ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑚 ) ) ) ) | |
| 8 | lmrel | ⊢ Rel ( ⇝𝑡 ‘ 𝐽 ) | |
| 9 | fvex | ⊢ ( ⇝ ‘ ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑚 ) ) ) ∈ V | |
| 10 | 9 7 | fnmpti | ⊢ 𝑃 Fn 𝐼 |
| 11 | 10 | a1i | ⊢ ( 𝜑 → 𝑃 Fn 𝐼 ) |
| 12 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 13 | 1zzd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) → 1 ∈ ℤ ) | |
| 14 | fveq2 | ⊢ ( 𝑡 = 𝑘 → ( 𝐹 ‘ 𝑡 ) = ( 𝐹 ‘ 𝑘 ) ) | |
| 15 | 14 | fveq1d | ⊢ ( 𝑡 = 𝑘 → ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) = ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) ) |
| 16 | eqid | ⊢ ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) = ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) | |
| 17 | fvex | ⊢ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) ∈ V | |
| 18 | 15 16 17 | fvmpt | ⊢ ( 𝑘 ∈ ℕ → ( ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) ) |
| 19 | 18 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) ) |
| 20 | 6 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) |
| 21 | 20 1 | eleqtrdi | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) ∈ ( ℝ ↑m 𝐼 ) ) |
| 22 | elmapi | ⊢ ( ( 𝐹 ‘ 𝑘 ) ∈ ( ℝ ↑m 𝐼 ) → ( 𝐹 ‘ 𝑘 ) : 𝐼 ⟶ ℝ ) | |
| 23 | 21 22 | syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) : 𝐼 ⟶ ℝ ) |
| 24 | 23 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ 𝐼 ) → ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) ∈ ℝ ) |
| 25 | 24 | an32s | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) ∈ ℝ ) |
| 26 | 19 25 | eqeltrd | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ‘ 𝑘 ) ∈ ℝ ) |
| 27 | 26 | recnd | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ‘ 𝑘 ) ∈ ℂ ) |
| 28 | 1 | rrnmet | ⊢ ( 𝐼 ∈ Fin → ( ℝn ‘ 𝐼 ) ∈ ( Met ‘ 𝑋 ) ) |
| 29 | 4 28 | syl | ⊢ ( 𝜑 → ( ℝn ‘ 𝐼 ) ∈ ( Met ‘ 𝑋 ) ) |
| 30 | metxmet | ⊢ ( ( ℝn ‘ 𝐼 ) ∈ ( Met ‘ 𝑋 ) → ( ℝn ‘ 𝐼 ) ∈ ( ∞Met ‘ 𝑋 ) ) | |
| 31 | 29 30 | syl | ⊢ ( 𝜑 → ( ℝn ‘ 𝐼 ) ∈ ( ∞Met ‘ 𝑋 ) ) |
| 32 | 1zzd | ⊢ ( 𝜑 → 1 ∈ ℤ ) | |
| 33 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) | |
| 34 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐹 ‘ 𝑗 ) = ( 𝐹 ‘ 𝑗 ) ) | |
| 35 | 12 31 32 33 34 6 | iscauf | ⊢ ( 𝜑 → ( 𝐹 ∈ ( Cau ‘ ( ℝn ‘ 𝐼 ) ) ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑗 ) ( ℝn ‘ 𝐼 ) ( 𝐹 ‘ 𝑘 ) ) < 𝑥 ) ) |
| 36 | 5 35 | mpbid | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑗 ) ( ℝn ‘ 𝐼 ) ( 𝐹 ‘ 𝑘 ) ) < 𝑥 ) |
| 37 | 36 | adantr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑗 ) ( ℝn ‘ 𝐼 ) ( 𝐹 ‘ 𝑘 ) ) < 𝑥 ) |
| 38 | 4 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝐼 ∈ Fin ) |
| 39 | simpllr | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑛 ∈ 𝐼 ) | |
| 40 | 6 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝐹 : ℕ ⟶ 𝑋 ) |
| 41 | eluznn | ⊢ ( ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑘 ∈ ℕ ) | |
| 42 | 41 | adantll | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑘 ∈ ℕ ) |
| 43 | 40 42 | ffvelcdmd | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) |
| 44 | simplr | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑗 ∈ ℕ ) | |
| 45 | 40 44 | ffvelcdmd | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ) |
| 46 | 1 2 | rrndstprj1 | ⊢ ( ( ( 𝐼 ∈ Fin ∧ 𝑛 ∈ 𝐼 ) ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ) ) → ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) ) ≤ ( ( 𝐹 ‘ 𝑘 ) ( ℝn ‘ 𝐼 ) ( 𝐹 ‘ 𝑗 ) ) ) |
| 47 | 38 39 43 45 46 | syl22anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) ) ≤ ( ( 𝐹 ‘ 𝑘 ) ( ℝn ‘ 𝐼 ) ( 𝐹 ‘ 𝑗 ) ) ) |
| 48 | 29 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ℝn ‘ 𝐼 ) ∈ ( Met ‘ 𝑋 ) ) |
| 49 | metsym | ⊢ ( ( ( ℝn ‘ 𝐼 ) ∈ ( Met ‘ 𝑋 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑘 ) ( ℝn ‘ 𝐼 ) ( 𝐹 ‘ 𝑗 ) ) = ( ( 𝐹 ‘ 𝑗 ) ( ℝn ‘ 𝐼 ) ( 𝐹 ‘ 𝑘 ) ) ) | |
| 50 | 48 43 45 49 | syl3anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( 𝐹 ‘ 𝑘 ) ( ℝn ‘ 𝐼 ) ( 𝐹 ‘ 𝑗 ) ) = ( ( 𝐹 ‘ 𝑗 ) ( ℝn ‘ 𝐼 ) ( 𝐹 ‘ 𝑘 ) ) ) |
| 51 | 47 50 | breqtrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) ) ≤ ( ( 𝐹 ‘ 𝑗 ) ( ℝn ‘ 𝐼 ) ( 𝐹 ‘ 𝑘 ) ) ) |
| 52 | 51 | adantllr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) ) ≤ ( ( 𝐹 ‘ 𝑗 ) ( ℝn ‘ 𝐼 ) ( 𝐹 ‘ 𝑘 ) ) ) |
| 53 | 2 | remet | ⊢ 𝑀 ∈ ( Met ‘ ℝ ) |
| 54 | 53 | a1i | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑀 ∈ ( Met ‘ ℝ ) ) |
| 55 | simpll | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ) | |
| 56 | 55 42 25 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) ∈ ℝ ) |
| 57 | 6 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ) |
| 58 | 57 1 | eleqtrdi | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐹 ‘ 𝑗 ) ∈ ( ℝ ↑m 𝐼 ) ) |
| 59 | elmapi | ⊢ ( ( 𝐹 ‘ 𝑗 ) ∈ ( ℝ ↑m 𝐼 ) → ( 𝐹 ‘ 𝑗 ) : 𝐼 ⟶ ℝ ) | |
| 60 | 58 59 | syl | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐹 ‘ 𝑗 ) : 𝐼 ⟶ ℝ ) |
| 61 | 60 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ 𝐼 ) → ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) ∈ ℝ ) |
| 62 | 61 | an32s | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑗 ∈ ℕ ) → ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) ∈ ℝ ) |
| 63 | 62 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) ∈ ℝ ) |
| 64 | metcl | ⊢ ( ( 𝑀 ∈ ( Met ‘ ℝ ) ∧ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) ∈ ℝ ) → ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) ) ∈ ℝ ) | |
| 65 | 54 56 63 64 | syl3anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) ) ∈ ℝ ) |
| 66 | 65 | adantllr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) ) ∈ ℝ ) |
| 67 | metcl | ⊢ ( ( ( ℝn ‘ 𝐼 ) ∈ ( Met ‘ 𝑋 ) ∧ ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑗 ) ( ℝn ‘ 𝐼 ) ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) | |
| 68 | 48 45 43 67 | syl3anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( 𝐹 ‘ 𝑗 ) ( ℝn ‘ 𝐼 ) ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) |
| 69 | 68 | adantllr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( 𝐹 ‘ 𝑗 ) ( ℝn ‘ 𝐼 ) ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) |
| 70 | rpre | ⊢ ( 𝑥 ∈ ℝ+ → 𝑥 ∈ ℝ ) | |
| 71 | 70 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑥 ∈ ℝ+ ) → 𝑥 ∈ ℝ ) |
| 72 | 71 | ad2antrr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑥 ∈ ℝ ) |
| 73 | lelttr | ⊢ ( ( ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) ) ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑗 ) ( ℝn ‘ 𝐼 ) ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( ( ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) ) ≤ ( ( 𝐹 ‘ 𝑗 ) ( ℝn ‘ 𝐼 ) ( 𝐹 ‘ 𝑘 ) ) ∧ ( ( 𝐹 ‘ 𝑗 ) ( ℝn ‘ 𝐼 ) ( 𝐹 ‘ 𝑘 ) ) < 𝑥 ) → ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) ) < 𝑥 ) ) | |
| 74 | 66 69 72 73 | syl3anc | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) ) ≤ ( ( 𝐹 ‘ 𝑗 ) ( ℝn ‘ 𝐼 ) ( 𝐹 ‘ 𝑘 ) ) ∧ ( ( 𝐹 ‘ 𝑗 ) ( ℝn ‘ 𝐼 ) ( 𝐹 ‘ 𝑘 ) ) < 𝑥 ) → ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) ) < 𝑥 ) ) |
| 75 | 52 74 | mpand | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( ( 𝐹 ‘ 𝑗 ) ( ℝn ‘ 𝐼 ) ( 𝐹 ‘ 𝑘 ) ) < 𝑥 → ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) ) < 𝑥 ) ) |
| 76 | 75 | ralimdva | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℕ ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑗 ) ( ℝn ‘ 𝐼 ) ( 𝐹 ‘ 𝑘 ) ) < 𝑥 → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) ) < 𝑥 ) ) |
| 77 | 76 | reximdva | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑥 ∈ ℝ+ ) → ( ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑗 ) ( ℝn ‘ 𝐼 ) ( 𝐹 ‘ 𝑘 ) ) < 𝑥 → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) ) < 𝑥 ) ) |
| 78 | 77 | ralimdva | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑗 ) ( ℝn ‘ 𝐼 ) ( 𝐹 ‘ 𝑘 ) ) < 𝑥 → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) ) < 𝑥 ) ) |
| 79 | 2 | remetdval | ⊢ ( ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) ∈ ℝ ) → ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) ) = ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) ) ) ) |
| 80 | 56 63 79 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) ) = ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) ) ) ) |
| 81 | 42 18 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) ) |
| 82 | fveq2 | ⊢ ( 𝑡 = 𝑗 → ( 𝐹 ‘ 𝑡 ) = ( 𝐹 ‘ 𝑗 ) ) | |
| 83 | 82 | fveq1d | ⊢ ( 𝑡 = 𝑗 → ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) = ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) ) |
| 84 | fvex | ⊢ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) ∈ V | |
| 85 | 83 16 84 | fvmpt | ⊢ ( 𝑗 ∈ ℕ → ( ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ‘ 𝑗 ) = ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) ) |
| 86 | 85 | ad2antlr | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ‘ 𝑗 ) = ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) ) |
| 87 | 81 86 | oveq12d | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ‘ 𝑘 ) − ( ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ‘ 𝑗 ) ) = ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) ) ) |
| 88 | 87 | fveq2d | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( abs ‘ ( ( ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ‘ 𝑘 ) − ( ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ‘ 𝑗 ) ) ) = ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) ) ) ) |
| 89 | 80 88 | eqtr4d | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) ) = ( abs ‘ ( ( ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ‘ 𝑘 ) − ( ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ‘ 𝑗 ) ) ) ) |
| 90 | 89 | breq1d | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) ) < 𝑥 ↔ ( abs ‘ ( ( ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ‘ 𝑘 ) − ( ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ‘ 𝑗 ) ) ) < 𝑥 ) ) |
| 91 | 90 | ralbidva | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑗 ∈ ℕ ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) ) < 𝑥 ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ‘ 𝑘 ) − ( ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ‘ 𝑗 ) ) ) < 𝑥 ) ) |
| 92 | 91 | rexbidva | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) → ( ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) ) < 𝑥 ↔ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ‘ 𝑘 ) − ( ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ‘ 𝑗 ) ) ) < 𝑥 ) ) |
| 93 | 92 | ralbidv | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) ) < 𝑥 ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ‘ 𝑘 ) − ( ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ‘ 𝑗 ) ) ) < 𝑥 ) ) |
| 94 | 78 93 | sylibd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑗 ) ( ℝn ‘ 𝐼 ) ( 𝐹 ‘ 𝑘 ) ) < 𝑥 → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ‘ 𝑘 ) − ( ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ‘ 𝑗 ) ) ) < 𝑥 ) ) |
| 95 | 37 94 | mpd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ‘ 𝑘 ) − ( ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ‘ 𝑗 ) ) ) < 𝑥 ) |
| 96 | nnex | ⊢ ℕ ∈ V | |
| 97 | 96 | mptex | ⊢ ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ∈ V |
| 98 | 97 | a1i | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) → ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ∈ V ) |
| 99 | 12 27 95 98 | caucvg | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) → ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ∈ dom ⇝ ) |
| 100 | climdm | ⊢ ( ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ∈ dom ⇝ ↔ ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ⇝ ( ⇝ ‘ ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ) ) | |
| 101 | 99 100 | sylib | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) → ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ⇝ ( ⇝ ‘ ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ) ) |
| 102 | fveq2 | ⊢ ( 𝑚 = 𝑛 → ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑚 ) = ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) | |
| 103 | 102 | mpteq2dv | ⊢ ( 𝑚 = 𝑛 → ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑚 ) ) = ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ) |
| 104 | 103 | fveq2d | ⊢ ( 𝑚 = 𝑛 → ( ⇝ ‘ ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑚 ) ) ) = ( ⇝ ‘ ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ) ) |
| 105 | fvex | ⊢ ( ⇝ ‘ ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ) ∈ V | |
| 106 | 104 7 105 | fvmpt | ⊢ ( 𝑛 ∈ 𝐼 → ( 𝑃 ‘ 𝑛 ) = ( ⇝ ‘ ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ) ) |
| 107 | 106 | adantl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) → ( 𝑃 ‘ 𝑛 ) = ( ⇝ ‘ ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ) ) |
| 108 | 101 107 | breqtrrd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) → ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ⇝ ( 𝑃 ‘ 𝑛 ) ) |
| 109 | 12 13 108 26 | climrecl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) → ( 𝑃 ‘ 𝑛 ) ∈ ℝ ) |
| 110 | 109 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑛 ∈ 𝐼 ( 𝑃 ‘ 𝑛 ) ∈ ℝ ) |
| 111 | ffnfv | ⊢ ( 𝑃 : 𝐼 ⟶ ℝ ↔ ( 𝑃 Fn 𝐼 ∧ ∀ 𝑛 ∈ 𝐼 ( 𝑃 ‘ 𝑛 ) ∈ ℝ ) ) | |
| 112 | 11 110 111 | sylanbrc | ⊢ ( 𝜑 → 𝑃 : 𝐼 ⟶ ℝ ) |
| 113 | reex | ⊢ ℝ ∈ V | |
| 114 | elmapg | ⊢ ( ( ℝ ∈ V ∧ 𝐼 ∈ Fin ) → ( 𝑃 ∈ ( ℝ ↑m 𝐼 ) ↔ 𝑃 : 𝐼 ⟶ ℝ ) ) | |
| 115 | 113 4 114 | sylancr | ⊢ ( 𝜑 → ( 𝑃 ∈ ( ℝ ↑m 𝐼 ) ↔ 𝑃 : 𝐼 ⟶ ℝ ) ) |
| 116 | 112 115 | mpbird | ⊢ ( 𝜑 → 𝑃 ∈ ( ℝ ↑m 𝐼 ) ) |
| 117 | 116 1 | eleqtrrdi | ⊢ ( 𝜑 → 𝑃 ∈ 𝑋 ) |
| 118 | 1nn | ⊢ 1 ∈ ℕ | |
| 119 | 4 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 = ∅ ) ) ∧ 𝑘 ∈ ℕ ) → 𝐼 ∈ Fin ) |
| 120 | 20 | adantlr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 = ∅ ) ) ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) |
| 121 | 117 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 = ∅ ) ) ∧ 𝑘 ∈ ℕ ) → 𝑃 ∈ 𝑋 ) |
| 122 | 1 | rrnmval | ⊢ ( ( 𝐼 ∈ Fin ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ 𝑃 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑘 ) ( ℝn ‘ 𝐼 ) 𝑃 ) = ( √ ‘ Σ 𝑦 ∈ 𝐼 ( ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) − ( 𝑃 ‘ 𝑦 ) ) ↑ 2 ) ) ) |
| 123 | 119 120 121 122 | syl3anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 = ∅ ) ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹 ‘ 𝑘 ) ( ℝn ‘ 𝐼 ) 𝑃 ) = ( √ ‘ Σ 𝑦 ∈ 𝐼 ( ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) − ( 𝑃 ‘ 𝑦 ) ) ↑ 2 ) ) ) |
| 124 | simplrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 = ∅ ) ) ∧ 𝑘 ∈ ℕ ) → 𝐼 = ∅ ) | |
| 125 | 124 | sumeq1d | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 = ∅ ) ) ∧ 𝑘 ∈ ℕ ) → Σ 𝑦 ∈ 𝐼 ( ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) − ( 𝑃 ‘ 𝑦 ) ) ↑ 2 ) = Σ 𝑦 ∈ ∅ ( ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) − ( 𝑃 ‘ 𝑦 ) ) ↑ 2 ) ) |
| 126 | sum0 | ⊢ Σ 𝑦 ∈ ∅ ( ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) − ( 𝑃 ‘ 𝑦 ) ) ↑ 2 ) = 0 | |
| 127 | 125 126 | eqtrdi | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 = ∅ ) ) ∧ 𝑘 ∈ ℕ ) → Σ 𝑦 ∈ 𝐼 ( ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) − ( 𝑃 ‘ 𝑦 ) ) ↑ 2 ) = 0 ) |
| 128 | 127 | fveq2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 = ∅ ) ) ∧ 𝑘 ∈ ℕ ) → ( √ ‘ Σ 𝑦 ∈ 𝐼 ( ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) − ( 𝑃 ‘ 𝑦 ) ) ↑ 2 ) ) = ( √ ‘ 0 ) ) |
| 129 | 123 128 | eqtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 = ∅ ) ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹 ‘ 𝑘 ) ( ℝn ‘ 𝐼 ) 𝑃 ) = ( √ ‘ 0 ) ) |
| 130 | sqrt0 | ⊢ ( √ ‘ 0 ) = 0 | |
| 131 | 129 130 | eqtrdi | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 = ∅ ) ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹 ‘ 𝑘 ) ( ℝn ‘ 𝐼 ) 𝑃 ) = 0 ) |
| 132 | simplrl | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 = ∅ ) ) ∧ 𝑘 ∈ ℕ ) → 𝑥 ∈ ℝ+ ) | |
| 133 | 132 | rpgt0d | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 = ∅ ) ) ∧ 𝑘 ∈ ℕ ) → 0 < 𝑥 ) |
| 134 | 131 133 | eqbrtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 = ∅ ) ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹 ‘ 𝑘 ) ( ℝn ‘ 𝐼 ) 𝑃 ) < 𝑥 ) |
| 135 | 134 | ralrimiva | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 = ∅ ) ) → ∀ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝑘 ) ( ℝn ‘ 𝐼 ) 𝑃 ) < 𝑥 ) |
| 136 | fveq2 | ⊢ ( 𝑗 = 1 → ( ℤ≥ ‘ 𝑗 ) = ( ℤ≥ ‘ 1 ) ) | |
| 137 | 136 12 | eqtr4di | ⊢ ( 𝑗 = 1 → ( ℤ≥ ‘ 𝑗 ) = ℕ ) |
| 138 | 137 | raleqdv | ⊢ ( 𝑗 = 1 → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ( ℝn ‘ 𝐼 ) 𝑃 ) < 𝑥 ↔ ∀ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝑘 ) ( ℝn ‘ 𝐼 ) 𝑃 ) < 𝑥 ) ) |
| 139 | 138 | rspcev | ⊢ ( ( 1 ∈ ℕ ∧ ∀ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝑘 ) ( ℝn ‘ 𝐼 ) 𝑃 ) < 𝑥 ) → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ( ℝn ‘ 𝐼 ) 𝑃 ) < 𝑥 ) |
| 140 | 118 135 139 | sylancr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 = ∅ ) ) → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ( ℝn ‘ 𝐼 ) 𝑃 ) < 𝑥 ) |
| 141 | 140 | expr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( 𝐼 = ∅ → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ( ℝn ‘ 𝐼 ) 𝑃 ) < 𝑥 ) ) |
| 142 | 1zzd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑛 ∈ 𝐼 ) → 1 ∈ ℤ ) | |
| 143 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) → 𝑥 ∈ ℝ+ ) | |
| 144 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) → 𝐼 ≠ ∅ ) | |
| 145 | 4 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) → 𝐼 ∈ Fin ) |
| 146 | hashnncl | ⊢ ( 𝐼 ∈ Fin → ( ( ♯ ‘ 𝐼 ) ∈ ℕ ↔ 𝐼 ≠ ∅ ) ) | |
| 147 | 145 146 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) → ( ( ♯ ‘ 𝐼 ) ∈ ℕ ↔ 𝐼 ≠ ∅ ) ) |
| 148 | 144 147 | mpbird | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) → ( ♯ ‘ 𝐼 ) ∈ ℕ ) |
| 149 | 148 | nnrpd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) → ( ♯ ‘ 𝐼 ) ∈ ℝ+ ) |
| 150 | 149 | rpsqrtcld | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) → ( √ ‘ ( ♯ ‘ 𝐼 ) ) ∈ ℝ+ ) |
| 151 | 143 150 | rpdivcld | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) → ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ∈ ℝ+ ) |
| 152 | 151 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑛 ∈ 𝐼 ) → ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ∈ ℝ+ ) |
| 153 | 18 | adantl | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) ) |
| 154 | 108 | adantlr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑛 ∈ 𝐼 ) → ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ⇝ ( 𝑃 ‘ 𝑛 ) ) |
| 155 | 12 142 152 153 154 | climi2 | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑛 ∈ 𝐼 ) → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) − ( 𝑃 ‘ 𝑛 ) ) ) < ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) |
| 156 | 1z | ⊢ 1 ∈ ℤ | |
| 157 | 12 | rexuz3 | ⊢ ( 1 ∈ ℤ → ( ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( 𝑃 ‘ 𝑛 ) ) < ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ↔ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( 𝑃 ‘ 𝑛 ) ) < ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) |
| 158 | 156 157 | ax-mp | ⊢ ( ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( 𝑃 ‘ 𝑛 ) ) < ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ↔ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( 𝑃 ‘ 𝑛 ) ) < ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) |
| 159 | 25 | adantllr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) ∈ ℝ ) |
| 160 | 109 | adantlr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑛 ∈ 𝐼 ) → ( 𝑃 ‘ 𝑛 ) ∈ ℝ ) |
| 161 | 160 | adantr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑘 ∈ ℕ ) → ( 𝑃 ‘ 𝑛 ) ∈ ℝ ) |
| 162 | 2 | remetdval | ⊢ ( ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) ∈ ℝ ∧ ( 𝑃 ‘ 𝑛 ) ∈ ℝ ) → ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( 𝑃 ‘ 𝑛 ) ) = ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) − ( 𝑃 ‘ 𝑛 ) ) ) ) |
| 163 | 159 161 162 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑘 ∈ ℕ ) → ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( 𝑃 ‘ 𝑛 ) ) = ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) − ( 𝑃 ‘ 𝑛 ) ) ) ) |
| 164 | 163 | breq1d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑘 ∈ ℕ ) → ( ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( 𝑃 ‘ 𝑛 ) ) < ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ↔ ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) − ( 𝑃 ‘ 𝑛 ) ) ) < ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) |
| 165 | 41 164 | sylan2 | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑛 ∈ 𝐼 ) ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( 𝑃 ‘ 𝑛 ) ) < ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ↔ ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) − ( 𝑃 ‘ 𝑛 ) ) ) < ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) |
| 166 | 165 | anassrs | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( 𝑃 ‘ 𝑛 ) ) < ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ↔ ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) − ( 𝑃 ‘ 𝑛 ) ) ) < ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) |
| 167 | 166 | ralbidva | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑗 ∈ ℕ ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( 𝑃 ‘ 𝑛 ) ) < ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) − ( 𝑃 ‘ 𝑛 ) ) ) < ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) |
| 168 | 167 | rexbidva | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑛 ∈ 𝐼 ) → ( ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( 𝑃 ‘ 𝑛 ) ) < ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ↔ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) − ( 𝑃 ‘ 𝑛 ) ) ) < ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) |
| 169 | 158 168 | bitr3id | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑛 ∈ 𝐼 ) → ( ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( 𝑃 ‘ 𝑛 ) ) < ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ↔ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) − ( 𝑃 ‘ 𝑛 ) ) ) < ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) |
| 170 | 155 169 | mpbird | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑛 ∈ 𝐼 ) → ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( 𝑃 ‘ 𝑛 ) ) < ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) |
| 171 | 170 | ralrimiva | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) → ∀ 𝑛 ∈ 𝐼 ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( 𝑃 ‘ 𝑛 ) ) < ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) |
| 172 | 12 | rexuz3 | ⊢ ( 1 ∈ ℤ → ( ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑛 ∈ 𝐼 ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( 𝑃 ‘ 𝑛 ) ) < ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ↔ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑛 ∈ 𝐼 ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( 𝑃 ‘ 𝑛 ) ) < ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) |
| 173 | 156 172 | ax-mp | ⊢ ( ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑛 ∈ 𝐼 ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( 𝑃 ‘ 𝑛 ) ) < ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ↔ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑛 ∈ 𝐼 ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( 𝑃 ‘ 𝑛 ) ) < ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) |
| 174 | rexfiuz | ⊢ ( 𝐼 ∈ Fin → ( ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑛 ∈ 𝐼 ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( 𝑃 ‘ 𝑛 ) ) < ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ↔ ∀ 𝑛 ∈ 𝐼 ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( 𝑃 ‘ 𝑛 ) ) < ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) | |
| 175 | 145 174 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) → ( ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑛 ∈ 𝐼 ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( 𝑃 ‘ 𝑛 ) ) < ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ↔ ∀ 𝑛 ∈ 𝐼 ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( 𝑃 ‘ 𝑛 ) ) < ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) |
| 176 | 173 175 | bitrid | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) → ( ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑛 ∈ 𝐼 ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( 𝑃 ‘ 𝑛 ) ) < ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ↔ ∀ 𝑛 ∈ 𝐼 ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( 𝑃 ‘ 𝑛 ) ) < ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) |
| 177 | 171 176 | mpbird | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑛 ∈ 𝐼 ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( 𝑃 ‘ 𝑛 ) ) < ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) |
| 178 | 4 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑘 ∈ ℕ ) → 𝐼 ∈ Fin ) |
| 179 | simplrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑘 ∈ ℕ ) → 𝐼 ≠ ∅ ) | |
| 180 | eldifsn | ⊢ ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ↔ ( 𝐼 ∈ Fin ∧ 𝐼 ≠ ∅ ) ) | |
| 181 | 178 179 180 | sylanbrc | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑘 ∈ ℕ ) → 𝐼 ∈ ( Fin ∖ { ∅ } ) ) |
| 182 | 6 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) → 𝐹 : ℕ ⟶ 𝑋 ) |
| 183 | 182 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) |
| 184 | 117 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑘 ∈ ℕ ) → 𝑃 ∈ 𝑋 ) |
| 185 | 151 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑘 ∈ ℕ ) → ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ∈ ℝ+ ) |
| 186 | 1 2 | rrndstprj2 | ⊢ ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ 𝑃 ∈ 𝑋 ) ∧ ( ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ∈ ℝ+ ∧ ∀ 𝑛 ∈ 𝐼 ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( 𝑃 ‘ 𝑛 ) ) < ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) → ( ( 𝐹 ‘ 𝑘 ) ( ℝn ‘ 𝐼 ) 𝑃 ) < ( ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) · ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) |
| 187 | 186 | expr | ⊢ ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ 𝑃 ∈ 𝑋 ) ∧ ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ∈ ℝ+ ) → ( ∀ 𝑛 ∈ 𝐼 ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( 𝑃 ‘ 𝑛 ) ) < ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) → ( ( 𝐹 ‘ 𝑘 ) ( ℝn ‘ 𝐼 ) 𝑃 ) < ( ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) · ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) |
| 188 | 181 183 184 185 187 | syl31anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑘 ∈ ℕ ) → ( ∀ 𝑛 ∈ 𝐼 ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( 𝑃 ‘ 𝑛 ) ) < ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) → ( ( 𝐹 ‘ 𝑘 ) ( ℝn ‘ 𝐼 ) 𝑃 ) < ( ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) · ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) |
| 189 | simplrl | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑘 ∈ ℕ ) → 𝑥 ∈ ℝ+ ) | |
| 190 | 189 | rpcnd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑘 ∈ ℕ ) → 𝑥 ∈ ℂ ) |
| 191 | 150 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑘 ∈ ℕ ) → ( √ ‘ ( ♯ ‘ 𝐼 ) ) ∈ ℝ+ ) |
| 192 | 191 | rpcnd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑘 ∈ ℕ ) → ( √ ‘ ( ♯ ‘ 𝐼 ) ) ∈ ℂ ) |
| 193 | 191 | rpne0d | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑘 ∈ ℕ ) → ( √ ‘ ( ♯ ‘ 𝐼 ) ) ≠ 0 ) |
| 194 | 190 192 193 | divcan1d | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) · ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) = 𝑥 ) |
| 195 | 194 | breq2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑘 ∈ ℕ ) → ( ( ( 𝐹 ‘ 𝑘 ) ( ℝn ‘ 𝐼 ) 𝑃 ) < ( ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) · ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ↔ ( ( 𝐹 ‘ 𝑘 ) ( ℝn ‘ 𝐼 ) 𝑃 ) < 𝑥 ) ) |
| 196 | 188 195 | sylibd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑘 ∈ ℕ ) → ( ∀ 𝑛 ∈ 𝐼 ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( 𝑃 ‘ 𝑛 ) ) < ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) → ( ( 𝐹 ‘ 𝑘 ) ( ℝn ‘ 𝐼 ) 𝑃 ) < 𝑥 ) ) |
| 197 | 41 196 | sylan2 | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ∀ 𝑛 ∈ 𝐼 ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( 𝑃 ‘ 𝑛 ) ) < ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) → ( ( 𝐹 ‘ 𝑘 ) ( ℝn ‘ 𝐼 ) 𝑃 ) < 𝑥 ) ) |
| 198 | 197 | anassrs | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ∀ 𝑛 ∈ 𝐼 ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( 𝑃 ‘ 𝑛 ) ) < ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) → ( ( 𝐹 ‘ 𝑘 ) ( ℝn ‘ 𝐼 ) 𝑃 ) < 𝑥 ) ) |
| 199 | 198 | ralimdva | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑗 ∈ ℕ ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑛 ∈ 𝐼 ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( 𝑃 ‘ 𝑛 ) ) < ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ( ℝn ‘ 𝐼 ) 𝑃 ) < 𝑥 ) ) |
| 200 | 199 | reximdva | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) → ( ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑛 ∈ 𝐼 ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( 𝑃 ‘ 𝑛 ) ) < ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ( ℝn ‘ 𝐼 ) 𝑃 ) < 𝑥 ) ) |
| 201 | 177 200 | mpd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ( ℝn ‘ 𝐼 ) 𝑃 ) < 𝑥 ) |
| 202 | 201 | expr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( 𝐼 ≠ ∅ → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ( ℝn ‘ 𝐼 ) 𝑃 ) < 𝑥 ) ) |
| 203 | 141 202 | pm2.61dne | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ( ℝn ‘ 𝐼 ) 𝑃 ) < 𝑥 ) |
| 204 | 203 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ( ℝn ‘ 𝐼 ) 𝑃 ) < 𝑥 ) |
| 205 | 3 31 12 32 33 6 | lmmbrf | ⊢ ( 𝜑 → ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ↔ ( 𝑃 ∈ 𝑋 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ( ℝn ‘ 𝐼 ) 𝑃 ) < 𝑥 ) ) ) |
| 206 | 117 204 205 | mpbir2and | ⊢ ( 𝜑 → 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) |
| 207 | releldm | ⊢ ( ( Rel ( ⇝𝑡 ‘ 𝐽 ) ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → 𝐹 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) | |
| 208 | 8 206 207 | sylancr | ⊢ ( 𝜑 → 𝐹 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) |