This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Convergence of a sequence of complex numbers. (Contributed by NM, 11-Jan-2007) (Revised by Mario Carneiro, 31-Jan-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | climi.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| climi.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| climi.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ+ ) | ||
| climi.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = 𝐵 ) | ||
| climi.5 | ⊢ ( 𝜑 → 𝐹 ⇝ 𝐴 ) | ||
| Assertion | climi2 | ⊢ ( 𝜑 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( 𝐵 − 𝐴 ) ) < 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climi.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | climi.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 3 | climi.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ+ ) | |
| 4 | climi.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = 𝐵 ) | |
| 5 | climi.5 | ⊢ ( 𝜑 → 𝐹 ⇝ 𝐴 ) | |
| 6 | 1 2 3 4 5 | climi | ⊢ ( 𝜑 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐵 ∈ ℂ ∧ ( abs ‘ ( 𝐵 − 𝐴 ) ) < 𝐶 ) ) |
| 7 | simpr | ⊢ ( ( 𝐵 ∈ ℂ ∧ ( abs ‘ ( 𝐵 − 𝐴 ) ) < 𝐶 ) → ( abs ‘ ( 𝐵 − 𝐴 ) ) < 𝐶 ) | |
| 8 | 7 | ralimi | ⊢ ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐵 ∈ ℂ ∧ ( abs ‘ ( 𝐵 − 𝐴 ) ) < 𝐶 ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( 𝐵 − 𝐴 ) ) < 𝐶 ) |
| 9 | 8 | reximi | ⊢ ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐵 ∈ ℂ ∧ ( abs ‘ ( 𝐵 − 𝐴 ) ) < 𝐶 ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( 𝐵 − 𝐴 ) ) < 𝐶 ) |
| 10 | 6 9 | syl | ⊢ ( 𝜑 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( 𝐵 − 𝐴 ) ) < 𝐶 ) |