This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The distance between two points in Euclidean space is greater than the distance between the projections onto one coordinate. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 13-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rrnval.1 | ⊢ 𝑋 = ( ℝ ↑m 𝐼 ) | |
| rrndstprj1.1 | ⊢ 𝑀 = ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) | ||
| Assertion | rrndstprj1 | ⊢ ( ( ( 𝐼 ∈ Fin ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ 𝐴 ) 𝑀 ( 𝐺 ‘ 𝐴 ) ) ≤ ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rrnval.1 | ⊢ 𝑋 = ( ℝ ↑m 𝐼 ) | |
| 2 | rrndstprj1.1 | ⊢ 𝑀 = ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) | |
| 3 | simpll | ⊢ ( ( ( 𝐼 ∈ Fin ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → 𝐼 ∈ Fin ) | |
| 4 | simprl | ⊢ ( ( ( 𝐼 ∈ Fin ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → 𝐹 ∈ 𝑋 ) | |
| 5 | 4 1 | eleqtrdi | ⊢ ( ( ( 𝐼 ∈ Fin ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → 𝐹 ∈ ( ℝ ↑m 𝐼 ) ) |
| 6 | elmapi | ⊢ ( 𝐹 ∈ ( ℝ ↑m 𝐼 ) → 𝐹 : 𝐼 ⟶ ℝ ) | |
| 7 | 5 6 | syl | ⊢ ( ( ( 𝐼 ∈ Fin ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → 𝐹 : 𝐼 ⟶ ℝ ) |
| 8 | 7 | ffvelcdmda | ⊢ ( ( ( ( 𝐼 ∈ Fin ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ 𝑘 ∈ 𝐼 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
| 9 | simprr | ⊢ ( ( ( 𝐼 ∈ Fin ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → 𝐺 ∈ 𝑋 ) | |
| 10 | 9 1 | eleqtrdi | ⊢ ( ( ( 𝐼 ∈ Fin ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → 𝐺 ∈ ( ℝ ↑m 𝐼 ) ) |
| 11 | elmapi | ⊢ ( 𝐺 ∈ ( ℝ ↑m 𝐼 ) → 𝐺 : 𝐼 ⟶ ℝ ) | |
| 12 | 10 11 | syl | ⊢ ( ( ( 𝐼 ∈ Fin ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → 𝐺 : 𝐼 ⟶ ℝ ) |
| 13 | 12 | ffvelcdmda | ⊢ ( ( ( ( 𝐼 ∈ Fin ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ 𝑘 ∈ 𝐼 ) → ( 𝐺 ‘ 𝑘 ) ∈ ℝ ) |
| 14 | 8 13 | resubcld | ⊢ ( ( ( ( 𝐼 ∈ Fin ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ 𝑘 ∈ 𝐼 ) → ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ∈ ℝ ) |
| 15 | 14 | resqcld | ⊢ ( ( ( ( 𝐼 ∈ Fin ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ 𝑘 ∈ 𝐼 ) → ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ∈ ℝ ) |
| 16 | 14 | sqge0d | ⊢ ( ( ( ( 𝐼 ∈ Fin ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ 𝑘 ∈ 𝐼 ) → 0 ≤ ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) |
| 17 | fveq2 | ⊢ ( 𝑘 = 𝐴 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝐴 ) ) | |
| 18 | fveq2 | ⊢ ( 𝑘 = 𝐴 → ( 𝐺 ‘ 𝑘 ) = ( 𝐺 ‘ 𝐴 ) ) | |
| 19 | 17 18 | oveq12d | ⊢ ( 𝑘 = 𝐴 → ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) = ( ( 𝐹 ‘ 𝐴 ) − ( 𝐺 ‘ 𝐴 ) ) ) |
| 20 | 19 | oveq1d | ⊢ ( 𝑘 = 𝐴 → ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) = ( ( ( 𝐹 ‘ 𝐴 ) − ( 𝐺 ‘ 𝐴 ) ) ↑ 2 ) ) |
| 21 | simplr | ⊢ ( ( ( 𝐼 ∈ Fin ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → 𝐴 ∈ 𝐼 ) | |
| 22 | 3 15 16 20 21 | fsumge1 | ⊢ ( ( ( 𝐼 ∈ Fin ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( ( ( 𝐹 ‘ 𝐴 ) − ( 𝐺 ‘ 𝐴 ) ) ↑ 2 ) ≤ Σ 𝑘 ∈ 𝐼 ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) |
| 23 | 7 21 | ffvelcdmd | ⊢ ( ( ( 𝐼 ∈ Fin ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( 𝐹 ‘ 𝐴 ) ∈ ℝ ) |
| 24 | 12 21 | ffvelcdmd | ⊢ ( ( ( 𝐼 ∈ Fin ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( 𝐺 ‘ 𝐴 ) ∈ ℝ ) |
| 25 | 23 24 | resubcld | ⊢ ( ( ( 𝐼 ∈ Fin ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ 𝐴 ) − ( 𝐺 ‘ 𝐴 ) ) ∈ ℝ ) |
| 26 | absresq | ⊢ ( ( ( 𝐹 ‘ 𝐴 ) − ( 𝐺 ‘ 𝐴 ) ) ∈ ℝ → ( ( abs ‘ ( ( 𝐹 ‘ 𝐴 ) − ( 𝐺 ‘ 𝐴 ) ) ) ↑ 2 ) = ( ( ( 𝐹 ‘ 𝐴 ) − ( 𝐺 ‘ 𝐴 ) ) ↑ 2 ) ) | |
| 27 | 25 26 | syl | ⊢ ( ( ( 𝐼 ∈ Fin ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝐴 ) − ( 𝐺 ‘ 𝐴 ) ) ) ↑ 2 ) = ( ( ( 𝐹 ‘ 𝐴 ) − ( 𝐺 ‘ 𝐴 ) ) ↑ 2 ) ) |
| 28 | 3 15 | fsumrecl | ⊢ ( ( ( 𝐼 ∈ Fin ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → Σ 𝑘 ∈ 𝐼 ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ∈ ℝ ) |
| 29 | 3 15 16 | fsumge0 | ⊢ ( ( ( 𝐼 ∈ Fin ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → 0 ≤ Σ 𝑘 ∈ 𝐼 ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) |
| 30 | resqrtth | ⊢ ( ( Σ 𝑘 ∈ 𝐼 ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ∈ ℝ ∧ 0 ≤ Σ 𝑘 ∈ 𝐼 ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) → ( ( √ ‘ Σ 𝑘 ∈ 𝐼 ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) ↑ 2 ) = Σ 𝑘 ∈ 𝐼 ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) | |
| 31 | 28 29 30 | syl2anc | ⊢ ( ( ( 𝐼 ∈ Fin ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( ( √ ‘ Σ 𝑘 ∈ 𝐼 ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) ↑ 2 ) = Σ 𝑘 ∈ 𝐼 ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) |
| 32 | 22 27 31 | 3brtr4d | ⊢ ( ( ( 𝐼 ∈ Fin ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝐴 ) − ( 𝐺 ‘ 𝐴 ) ) ) ↑ 2 ) ≤ ( ( √ ‘ Σ 𝑘 ∈ 𝐼 ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) ↑ 2 ) ) |
| 33 | 25 | recnd | ⊢ ( ( ( 𝐼 ∈ Fin ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ 𝐴 ) − ( 𝐺 ‘ 𝐴 ) ) ∈ ℂ ) |
| 34 | 33 | abscld | ⊢ ( ( ( 𝐼 ∈ Fin ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝐴 ) − ( 𝐺 ‘ 𝐴 ) ) ) ∈ ℝ ) |
| 35 | 28 29 | resqrtcld | ⊢ ( ( ( 𝐼 ∈ Fin ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( √ ‘ Σ 𝑘 ∈ 𝐼 ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) ∈ ℝ ) |
| 36 | 33 | absge0d | ⊢ ( ( ( 𝐼 ∈ Fin ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → 0 ≤ ( abs ‘ ( ( 𝐹 ‘ 𝐴 ) − ( 𝐺 ‘ 𝐴 ) ) ) ) |
| 37 | 28 29 | sqrtge0d | ⊢ ( ( ( 𝐼 ∈ Fin ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → 0 ≤ ( √ ‘ Σ 𝑘 ∈ 𝐼 ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) ) |
| 38 | 34 35 36 37 | le2sqd | ⊢ ( ( ( 𝐼 ∈ Fin ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝐴 ) − ( 𝐺 ‘ 𝐴 ) ) ) ≤ ( √ ‘ Σ 𝑘 ∈ 𝐼 ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) ↔ ( ( abs ‘ ( ( 𝐹 ‘ 𝐴 ) − ( 𝐺 ‘ 𝐴 ) ) ) ↑ 2 ) ≤ ( ( √ ‘ Σ 𝑘 ∈ 𝐼 ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) ↑ 2 ) ) ) |
| 39 | 32 38 | mpbird | ⊢ ( ( ( 𝐼 ∈ Fin ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝐴 ) − ( 𝐺 ‘ 𝐴 ) ) ) ≤ ( √ ‘ Σ 𝑘 ∈ 𝐼 ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) ) |
| 40 | 2 | remetdval | ⊢ ( ( ( 𝐹 ‘ 𝐴 ) ∈ ℝ ∧ ( 𝐺 ‘ 𝐴 ) ∈ ℝ ) → ( ( 𝐹 ‘ 𝐴 ) 𝑀 ( 𝐺 ‘ 𝐴 ) ) = ( abs ‘ ( ( 𝐹 ‘ 𝐴 ) − ( 𝐺 ‘ 𝐴 ) ) ) ) |
| 41 | 23 24 40 | syl2anc | ⊢ ( ( ( 𝐼 ∈ Fin ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ 𝐴 ) 𝑀 ( 𝐺 ‘ 𝐴 ) ) = ( abs ‘ ( ( 𝐹 ‘ 𝐴 ) − ( 𝐺 ‘ 𝐴 ) ) ) ) |
| 42 | 1 | rrnmval | ⊢ ( ( 𝐼 ∈ Fin ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) → ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) = ( √ ‘ Σ 𝑘 ∈ 𝐼 ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) ) |
| 43 | 42 | 3expb | ⊢ ( ( 𝐼 ∈ Fin ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) = ( √ ‘ Σ 𝑘 ∈ 𝐼 ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) ) |
| 44 | 43 | adantlr | ⊢ ( ( ( 𝐼 ∈ Fin ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) = ( √ ‘ Σ 𝑘 ∈ 𝐼 ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) ) |
| 45 | 39 41 44 | 3brtr4d | ⊢ ( ( ( 𝐼 ∈ Fin ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ 𝐴 ) 𝑀 ( 𝐺 ‘ 𝐴 ) ) ≤ ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ) |