This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for rrncms . (Contributed by Jeff Madsen, 6-Jun-2014) (Revised by Mario Carneiro, 13-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rrnval.1 | |- X = ( RR ^m I ) |
|
| rrndstprj1.1 | |- M = ( ( abs o. - ) |` ( RR X. RR ) ) |
||
| rrncms.3 | |- J = ( MetOpen ` ( Rn ` I ) ) |
||
| rrncms.4 | |- ( ph -> I e. Fin ) |
||
| rrncms.5 | |- ( ph -> F e. ( Cau ` ( Rn ` I ) ) ) |
||
| rrncms.6 | |- ( ph -> F : NN --> X ) |
||
| rrncms.7 | |- P = ( m e. I |-> ( ~~> ` ( t e. NN |-> ( ( F ` t ) ` m ) ) ) ) |
||
| Assertion | rrncmslem | |- ( ph -> F e. dom ( ~~>t ` J ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rrnval.1 | |- X = ( RR ^m I ) |
|
| 2 | rrndstprj1.1 | |- M = ( ( abs o. - ) |` ( RR X. RR ) ) |
|
| 3 | rrncms.3 | |- J = ( MetOpen ` ( Rn ` I ) ) |
|
| 4 | rrncms.4 | |- ( ph -> I e. Fin ) |
|
| 5 | rrncms.5 | |- ( ph -> F e. ( Cau ` ( Rn ` I ) ) ) |
|
| 6 | rrncms.6 | |- ( ph -> F : NN --> X ) |
|
| 7 | rrncms.7 | |- P = ( m e. I |-> ( ~~> ` ( t e. NN |-> ( ( F ` t ) ` m ) ) ) ) |
|
| 8 | lmrel | |- Rel ( ~~>t ` J ) |
|
| 9 | fvex | |- ( ~~> ` ( t e. NN |-> ( ( F ` t ) ` m ) ) ) e. _V |
|
| 10 | 9 7 | fnmpti | |- P Fn I |
| 11 | 10 | a1i | |- ( ph -> P Fn I ) |
| 12 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 13 | 1zzd | |- ( ( ph /\ n e. I ) -> 1 e. ZZ ) |
|
| 14 | fveq2 | |- ( t = k -> ( F ` t ) = ( F ` k ) ) |
|
| 15 | 14 | fveq1d | |- ( t = k -> ( ( F ` t ) ` n ) = ( ( F ` k ) ` n ) ) |
| 16 | eqid | |- ( t e. NN |-> ( ( F ` t ) ` n ) ) = ( t e. NN |-> ( ( F ` t ) ` n ) ) |
|
| 17 | fvex | |- ( ( F ` k ) ` n ) e. _V |
|
| 18 | 15 16 17 | fvmpt | |- ( k e. NN -> ( ( t e. NN |-> ( ( F ` t ) ` n ) ) ` k ) = ( ( F ` k ) ` n ) ) |
| 19 | 18 | adantl | |- ( ( ( ph /\ n e. I ) /\ k e. NN ) -> ( ( t e. NN |-> ( ( F ` t ) ` n ) ) ` k ) = ( ( F ` k ) ` n ) ) |
| 20 | 6 | ffvelcdmda | |- ( ( ph /\ k e. NN ) -> ( F ` k ) e. X ) |
| 21 | 20 1 | eleqtrdi | |- ( ( ph /\ k e. NN ) -> ( F ` k ) e. ( RR ^m I ) ) |
| 22 | elmapi | |- ( ( F ` k ) e. ( RR ^m I ) -> ( F ` k ) : I --> RR ) |
|
| 23 | 21 22 | syl | |- ( ( ph /\ k e. NN ) -> ( F ` k ) : I --> RR ) |
| 24 | 23 | ffvelcdmda | |- ( ( ( ph /\ k e. NN ) /\ n e. I ) -> ( ( F ` k ) ` n ) e. RR ) |
| 25 | 24 | an32s | |- ( ( ( ph /\ n e. I ) /\ k e. NN ) -> ( ( F ` k ) ` n ) e. RR ) |
| 26 | 19 25 | eqeltrd | |- ( ( ( ph /\ n e. I ) /\ k e. NN ) -> ( ( t e. NN |-> ( ( F ` t ) ` n ) ) ` k ) e. RR ) |
| 27 | 26 | recnd | |- ( ( ( ph /\ n e. I ) /\ k e. NN ) -> ( ( t e. NN |-> ( ( F ` t ) ` n ) ) ` k ) e. CC ) |
| 28 | 1 | rrnmet | |- ( I e. Fin -> ( Rn ` I ) e. ( Met ` X ) ) |
| 29 | 4 28 | syl | |- ( ph -> ( Rn ` I ) e. ( Met ` X ) ) |
| 30 | metxmet | |- ( ( Rn ` I ) e. ( Met ` X ) -> ( Rn ` I ) e. ( *Met ` X ) ) |
|
| 31 | 29 30 | syl | |- ( ph -> ( Rn ` I ) e. ( *Met ` X ) ) |
| 32 | 1zzd | |- ( ph -> 1 e. ZZ ) |
|
| 33 | eqidd | |- ( ( ph /\ k e. NN ) -> ( F ` k ) = ( F ` k ) ) |
|
| 34 | eqidd | |- ( ( ph /\ j e. NN ) -> ( F ` j ) = ( F ` j ) ) |
|
| 35 | 12 31 32 33 34 6 | iscauf | |- ( ph -> ( F e. ( Cau ` ( Rn ` I ) ) <-> A. x e. RR+ E. j e. NN A. k e. ( ZZ>= ` j ) ( ( F ` j ) ( Rn ` I ) ( F ` k ) ) < x ) ) |
| 36 | 5 35 | mpbid | |- ( ph -> A. x e. RR+ E. j e. NN A. k e. ( ZZ>= ` j ) ( ( F ` j ) ( Rn ` I ) ( F ` k ) ) < x ) |
| 37 | 36 | adantr | |- ( ( ph /\ n e. I ) -> A. x e. RR+ E. j e. NN A. k e. ( ZZ>= ` j ) ( ( F ` j ) ( Rn ` I ) ( F ` k ) ) < x ) |
| 38 | 4 | ad3antrrr | |- ( ( ( ( ph /\ n e. I ) /\ j e. NN ) /\ k e. ( ZZ>= ` j ) ) -> I e. Fin ) |
| 39 | simpllr | |- ( ( ( ( ph /\ n e. I ) /\ j e. NN ) /\ k e. ( ZZ>= ` j ) ) -> n e. I ) |
|
| 40 | 6 | ad3antrrr | |- ( ( ( ( ph /\ n e. I ) /\ j e. NN ) /\ k e. ( ZZ>= ` j ) ) -> F : NN --> X ) |
| 41 | eluznn | |- ( ( j e. NN /\ k e. ( ZZ>= ` j ) ) -> k e. NN ) |
|
| 42 | 41 | adantll | |- ( ( ( ( ph /\ n e. I ) /\ j e. NN ) /\ k e. ( ZZ>= ` j ) ) -> k e. NN ) |
| 43 | 40 42 | ffvelcdmd | |- ( ( ( ( ph /\ n e. I ) /\ j e. NN ) /\ k e. ( ZZ>= ` j ) ) -> ( F ` k ) e. X ) |
| 44 | simplr | |- ( ( ( ( ph /\ n e. I ) /\ j e. NN ) /\ k e. ( ZZ>= ` j ) ) -> j e. NN ) |
|
| 45 | 40 44 | ffvelcdmd | |- ( ( ( ( ph /\ n e. I ) /\ j e. NN ) /\ k e. ( ZZ>= ` j ) ) -> ( F ` j ) e. X ) |
| 46 | 1 2 | rrndstprj1 | |- ( ( ( I e. Fin /\ n e. I ) /\ ( ( F ` k ) e. X /\ ( F ` j ) e. X ) ) -> ( ( ( F ` k ) ` n ) M ( ( F ` j ) ` n ) ) <_ ( ( F ` k ) ( Rn ` I ) ( F ` j ) ) ) |
| 47 | 38 39 43 45 46 | syl22anc | |- ( ( ( ( ph /\ n e. I ) /\ j e. NN ) /\ k e. ( ZZ>= ` j ) ) -> ( ( ( F ` k ) ` n ) M ( ( F ` j ) ` n ) ) <_ ( ( F ` k ) ( Rn ` I ) ( F ` j ) ) ) |
| 48 | 29 | ad3antrrr | |- ( ( ( ( ph /\ n e. I ) /\ j e. NN ) /\ k e. ( ZZ>= ` j ) ) -> ( Rn ` I ) e. ( Met ` X ) ) |
| 49 | metsym | |- ( ( ( Rn ` I ) e. ( Met ` X ) /\ ( F ` k ) e. X /\ ( F ` j ) e. X ) -> ( ( F ` k ) ( Rn ` I ) ( F ` j ) ) = ( ( F ` j ) ( Rn ` I ) ( F ` k ) ) ) |
|
| 50 | 48 43 45 49 | syl3anc | |- ( ( ( ( ph /\ n e. I ) /\ j e. NN ) /\ k e. ( ZZ>= ` j ) ) -> ( ( F ` k ) ( Rn ` I ) ( F ` j ) ) = ( ( F ` j ) ( Rn ` I ) ( F ` k ) ) ) |
| 51 | 47 50 | breqtrd | |- ( ( ( ( ph /\ n e. I ) /\ j e. NN ) /\ k e. ( ZZ>= ` j ) ) -> ( ( ( F ` k ) ` n ) M ( ( F ` j ) ` n ) ) <_ ( ( F ` j ) ( Rn ` I ) ( F ` k ) ) ) |
| 52 | 51 | adantllr | |- ( ( ( ( ( ph /\ n e. I ) /\ x e. RR+ ) /\ j e. NN ) /\ k e. ( ZZ>= ` j ) ) -> ( ( ( F ` k ) ` n ) M ( ( F ` j ) ` n ) ) <_ ( ( F ` j ) ( Rn ` I ) ( F ` k ) ) ) |
| 53 | 2 | remet | |- M e. ( Met ` RR ) |
| 54 | 53 | a1i | |- ( ( ( ( ph /\ n e. I ) /\ j e. NN ) /\ k e. ( ZZ>= ` j ) ) -> M e. ( Met ` RR ) ) |
| 55 | simpll | |- ( ( ( ( ph /\ n e. I ) /\ j e. NN ) /\ k e. ( ZZ>= ` j ) ) -> ( ph /\ n e. I ) ) |
|
| 56 | 55 42 25 | syl2anc | |- ( ( ( ( ph /\ n e. I ) /\ j e. NN ) /\ k e. ( ZZ>= ` j ) ) -> ( ( F ` k ) ` n ) e. RR ) |
| 57 | 6 | ffvelcdmda | |- ( ( ph /\ j e. NN ) -> ( F ` j ) e. X ) |
| 58 | 57 1 | eleqtrdi | |- ( ( ph /\ j e. NN ) -> ( F ` j ) e. ( RR ^m I ) ) |
| 59 | elmapi | |- ( ( F ` j ) e. ( RR ^m I ) -> ( F ` j ) : I --> RR ) |
|
| 60 | 58 59 | syl | |- ( ( ph /\ j e. NN ) -> ( F ` j ) : I --> RR ) |
| 61 | 60 | ffvelcdmda | |- ( ( ( ph /\ j e. NN ) /\ n e. I ) -> ( ( F ` j ) ` n ) e. RR ) |
| 62 | 61 | an32s | |- ( ( ( ph /\ n e. I ) /\ j e. NN ) -> ( ( F ` j ) ` n ) e. RR ) |
| 63 | 62 | adantr | |- ( ( ( ( ph /\ n e. I ) /\ j e. NN ) /\ k e. ( ZZ>= ` j ) ) -> ( ( F ` j ) ` n ) e. RR ) |
| 64 | metcl | |- ( ( M e. ( Met ` RR ) /\ ( ( F ` k ) ` n ) e. RR /\ ( ( F ` j ) ` n ) e. RR ) -> ( ( ( F ` k ) ` n ) M ( ( F ` j ) ` n ) ) e. RR ) |
|
| 65 | 54 56 63 64 | syl3anc | |- ( ( ( ( ph /\ n e. I ) /\ j e. NN ) /\ k e. ( ZZ>= ` j ) ) -> ( ( ( F ` k ) ` n ) M ( ( F ` j ) ` n ) ) e. RR ) |
| 66 | 65 | adantllr | |- ( ( ( ( ( ph /\ n e. I ) /\ x e. RR+ ) /\ j e. NN ) /\ k e. ( ZZ>= ` j ) ) -> ( ( ( F ` k ) ` n ) M ( ( F ` j ) ` n ) ) e. RR ) |
| 67 | metcl | |- ( ( ( Rn ` I ) e. ( Met ` X ) /\ ( F ` j ) e. X /\ ( F ` k ) e. X ) -> ( ( F ` j ) ( Rn ` I ) ( F ` k ) ) e. RR ) |
|
| 68 | 48 45 43 67 | syl3anc | |- ( ( ( ( ph /\ n e. I ) /\ j e. NN ) /\ k e. ( ZZ>= ` j ) ) -> ( ( F ` j ) ( Rn ` I ) ( F ` k ) ) e. RR ) |
| 69 | 68 | adantllr | |- ( ( ( ( ( ph /\ n e. I ) /\ x e. RR+ ) /\ j e. NN ) /\ k e. ( ZZ>= ` j ) ) -> ( ( F ` j ) ( Rn ` I ) ( F ` k ) ) e. RR ) |
| 70 | rpre | |- ( x e. RR+ -> x e. RR ) |
|
| 71 | 70 | adantl | |- ( ( ( ph /\ n e. I ) /\ x e. RR+ ) -> x e. RR ) |
| 72 | 71 | ad2antrr | |- ( ( ( ( ( ph /\ n e. I ) /\ x e. RR+ ) /\ j e. NN ) /\ k e. ( ZZ>= ` j ) ) -> x e. RR ) |
| 73 | lelttr | |- ( ( ( ( ( F ` k ) ` n ) M ( ( F ` j ) ` n ) ) e. RR /\ ( ( F ` j ) ( Rn ` I ) ( F ` k ) ) e. RR /\ x e. RR ) -> ( ( ( ( ( F ` k ) ` n ) M ( ( F ` j ) ` n ) ) <_ ( ( F ` j ) ( Rn ` I ) ( F ` k ) ) /\ ( ( F ` j ) ( Rn ` I ) ( F ` k ) ) < x ) -> ( ( ( F ` k ) ` n ) M ( ( F ` j ) ` n ) ) < x ) ) |
|
| 74 | 66 69 72 73 | syl3anc | |- ( ( ( ( ( ph /\ n e. I ) /\ x e. RR+ ) /\ j e. NN ) /\ k e. ( ZZ>= ` j ) ) -> ( ( ( ( ( F ` k ) ` n ) M ( ( F ` j ) ` n ) ) <_ ( ( F ` j ) ( Rn ` I ) ( F ` k ) ) /\ ( ( F ` j ) ( Rn ` I ) ( F ` k ) ) < x ) -> ( ( ( F ` k ) ` n ) M ( ( F ` j ) ` n ) ) < x ) ) |
| 75 | 52 74 | mpand | |- ( ( ( ( ( ph /\ n e. I ) /\ x e. RR+ ) /\ j e. NN ) /\ k e. ( ZZ>= ` j ) ) -> ( ( ( F ` j ) ( Rn ` I ) ( F ` k ) ) < x -> ( ( ( F ` k ) ` n ) M ( ( F ` j ) ` n ) ) < x ) ) |
| 76 | 75 | ralimdva | |- ( ( ( ( ph /\ n e. I ) /\ x e. RR+ ) /\ j e. NN ) -> ( A. k e. ( ZZ>= ` j ) ( ( F ` j ) ( Rn ` I ) ( F ` k ) ) < x -> A. k e. ( ZZ>= ` j ) ( ( ( F ` k ) ` n ) M ( ( F ` j ) ` n ) ) < x ) ) |
| 77 | 76 | reximdva | |- ( ( ( ph /\ n e. I ) /\ x e. RR+ ) -> ( E. j e. NN A. k e. ( ZZ>= ` j ) ( ( F ` j ) ( Rn ` I ) ( F ` k ) ) < x -> E. j e. NN A. k e. ( ZZ>= ` j ) ( ( ( F ` k ) ` n ) M ( ( F ` j ) ` n ) ) < x ) ) |
| 78 | 77 | ralimdva | |- ( ( ph /\ n e. I ) -> ( A. x e. RR+ E. j e. NN A. k e. ( ZZ>= ` j ) ( ( F ` j ) ( Rn ` I ) ( F ` k ) ) < x -> A. x e. RR+ E. j e. NN A. k e. ( ZZ>= ` j ) ( ( ( F ` k ) ` n ) M ( ( F ` j ) ` n ) ) < x ) ) |
| 79 | 2 | remetdval | |- ( ( ( ( F ` k ) ` n ) e. RR /\ ( ( F ` j ) ` n ) e. RR ) -> ( ( ( F ` k ) ` n ) M ( ( F ` j ) ` n ) ) = ( abs ` ( ( ( F ` k ) ` n ) - ( ( F ` j ) ` n ) ) ) ) |
| 80 | 56 63 79 | syl2anc | |- ( ( ( ( ph /\ n e. I ) /\ j e. NN ) /\ k e. ( ZZ>= ` j ) ) -> ( ( ( F ` k ) ` n ) M ( ( F ` j ) ` n ) ) = ( abs ` ( ( ( F ` k ) ` n ) - ( ( F ` j ) ` n ) ) ) ) |
| 81 | 42 18 | syl | |- ( ( ( ( ph /\ n e. I ) /\ j e. NN ) /\ k e. ( ZZ>= ` j ) ) -> ( ( t e. NN |-> ( ( F ` t ) ` n ) ) ` k ) = ( ( F ` k ) ` n ) ) |
| 82 | fveq2 | |- ( t = j -> ( F ` t ) = ( F ` j ) ) |
|
| 83 | 82 | fveq1d | |- ( t = j -> ( ( F ` t ) ` n ) = ( ( F ` j ) ` n ) ) |
| 84 | fvex | |- ( ( F ` j ) ` n ) e. _V |
|
| 85 | 83 16 84 | fvmpt | |- ( j e. NN -> ( ( t e. NN |-> ( ( F ` t ) ` n ) ) ` j ) = ( ( F ` j ) ` n ) ) |
| 86 | 85 | ad2antlr | |- ( ( ( ( ph /\ n e. I ) /\ j e. NN ) /\ k e. ( ZZ>= ` j ) ) -> ( ( t e. NN |-> ( ( F ` t ) ` n ) ) ` j ) = ( ( F ` j ) ` n ) ) |
| 87 | 81 86 | oveq12d | |- ( ( ( ( ph /\ n e. I ) /\ j e. NN ) /\ k e. ( ZZ>= ` j ) ) -> ( ( ( t e. NN |-> ( ( F ` t ) ` n ) ) ` k ) - ( ( t e. NN |-> ( ( F ` t ) ` n ) ) ` j ) ) = ( ( ( F ` k ) ` n ) - ( ( F ` j ) ` n ) ) ) |
| 88 | 87 | fveq2d | |- ( ( ( ( ph /\ n e. I ) /\ j e. NN ) /\ k e. ( ZZ>= ` j ) ) -> ( abs ` ( ( ( t e. NN |-> ( ( F ` t ) ` n ) ) ` k ) - ( ( t e. NN |-> ( ( F ` t ) ` n ) ) ` j ) ) ) = ( abs ` ( ( ( F ` k ) ` n ) - ( ( F ` j ) ` n ) ) ) ) |
| 89 | 80 88 | eqtr4d | |- ( ( ( ( ph /\ n e. I ) /\ j e. NN ) /\ k e. ( ZZ>= ` j ) ) -> ( ( ( F ` k ) ` n ) M ( ( F ` j ) ` n ) ) = ( abs ` ( ( ( t e. NN |-> ( ( F ` t ) ` n ) ) ` k ) - ( ( t e. NN |-> ( ( F ` t ) ` n ) ) ` j ) ) ) ) |
| 90 | 89 | breq1d | |- ( ( ( ( ph /\ n e. I ) /\ j e. NN ) /\ k e. ( ZZ>= ` j ) ) -> ( ( ( ( F ` k ) ` n ) M ( ( F ` j ) ` n ) ) < x <-> ( abs ` ( ( ( t e. NN |-> ( ( F ` t ) ` n ) ) ` k ) - ( ( t e. NN |-> ( ( F ` t ) ` n ) ) ` j ) ) ) < x ) ) |
| 91 | 90 | ralbidva | |- ( ( ( ph /\ n e. I ) /\ j e. NN ) -> ( A. k e. ( ZZ>= ` j ) ( ( ( F ` k ) ` n ) M ( ( F ` j ) ` n ) ) < x <-> A. k e. ( ZZ>= ` j ) ( abs ` ( ( ( t e. NN |-> ( ( F ` t ) ` n ) ) ` k ) - ( ( t e. NN |-> ( ( F ` t ) ` n ) ) ` j ) ) ) < x ) ) |
| 92 | 91 | rexbidva | |- ( ( ph /\ n e. I ) -> ( E. j e. NN A. k e. ( ZZ>= ` j ) ( ( ( F ` k ) ` n ) M ( ( F ` j ) ` n ) ) < x <-> E. j e. NN A. k e. ( ZZ>= ` j ) ( abs ` ( ( ( t e. NN |-> ( ( F ` t ) ` n ) ) ` k ) - ( ( t e. NN |-> ( ( F ` t ) ` n ) ) ` j ) ) ) < x ) ) |
| 93 | 92 | ralbidv | |- ( ( ph /\ n e. I ) -> ( A. x e. RR+ E. j e. NN A. k e. ( ZZ>= ` j ) ( ( ( F ` k ) ` n ) M ( ( F ` j ) ` n ) ) < x <-> A. x e. RR+ E. j e. NN A. k e. ( ZZ>= ` j ) ( abs ` ( ( ( t e. NN |-> ( ( F ` t ) ` n ) ) ` k ) - ( ( t e. NN |-> ( ( F ` t ) ` n ) ) ` j ) ) ) < x ) ) |
| 94 | 78 93 | sylibd | |- ( ( ph /\ n e. I ) -> ( A. x e. RR+ E. j e. NN A. k e. ( ZZ>= ` j ) ( ( F ` j ) ( Rn ` I ) ( F ` k ) ) < x -> A. x e. RR+ E. j e. NN A. k e. ( ZZ>= ` j ) ( abs ` ( ( ( t e. NN |-> ( ( F ` t ) ` n ) ) ` k ) - ( ( t e. NN |-> ( ( F ` t ) ` n ) ) ` j ) ) ) < x ) ) |
| 95 | 37 94 | mpd | |- ( ( ph /\ n e. I ) -> A. x e. RR+ E. j e. NN A. k e. ( ZZ>= ` j ) ( abs ` ( ( ( t e. NN |-> ( ( F ` t ) ` n ) ) ` k ) - ( ( t e. NN |-> ( ( F ` t ) ` n ) ) ` j ) ) ) < x ) |
| 96 | nnex | |- NN e. _V |
|
| 97 | 96 | mptex | |- ( t e. NN |-> ( ( F ` t ) ` n ) ) e. _V |
| 98 | 97 | a1i | |- ( ( ph /\ n e. I ) -> ( t e. NN |-> ( ( F ` t ) ` n ) ) e. _V ) |
| 99 | 12 27 95 98 | caucvg | |- ( ( ph /\ n e. I ) -> ( t e. NN |-> ( ( F ` t ) ` n ) ) e. dom ~~> ) |
| 100 | climdm | |- ( ( t e. NN |-> ( ( F ` t ) ` n ) ) e. dom ~~> <-> ( t e. NN |-> ( ( F ` t ) ` n ) ) ~~> ( ~~> ` ( t e. NN |-> ( ( F ` t ) ` n ) ) ) ) |
|
| 101 | 99 100 | sylib | |- ( ( ph /\ n e. I ) -> ( t e. NN |-> ( ( F ` t ) ` n ) ) ~~> ( ~~> ` ( t e. NN |-> ( ( F ` t ) ` n ) ) ) ) |
| 102 | fveq2 | |- ( m = n -> ( ( F ` t ) ` m ) = ( ( F ` t ) ` n ) ) |
|
| 103 | 102 | mpteq2dv | |- ( m = n -> ( t e. NN |-> ( ( F ` t ) ` m ) ) = ( t e. NN |-> ( ( F ` t ) ` n ) ) ) |
| 104 | 103 | fveq2d | |- ( m = n -> ( ~~> ` ( t e. NN |-> ( ( F ` t ) ` m ) ) ) = ( ~~> ` ( t e. NN |-> ( ( F ` t ) ` n ) ) ) ) |
| 105 | fvex | |- ( ~~> ` ( t e. NN |-> ( ( F ` t ) ` n ) ) ) e. _V |
|
| 106 | 104 7 105 | fvmpt | |- ( n e. I -> ( P ` n ) = ( ~~> ` ( t e. NN |-> ( ( F ` t ) ` n ) ) ) ) |
| 107 | 106 | adantl | |- ( ( ph /\ n e. I ) -> ( P ` n ) = ( ~~> ` ( t e. NN |-> ( ( F ` t ) ` n ) ) ) ) |
| 108 | 101 107 | breqtrrd | |- ( ( ph /\ n e. I ) -> ( t e. NN |-> ( ( F ` t ) ` n ) ) ~~> ( P ` n ) ) |
| 109 | 12 13 108 26 | climrecl | |- ( ( ph /\ n e. I ) -> ( P ` n ) e. RR ) |
| 110 | 109 | ralrimiva | |- ( ph -> A. n e. I ( P ` n ) e. RR ) |
| 111 | ffnfv | |- ( P : I --> RR <-> ( P Fn I /\ A. n e. I ( P ` n ) e. RR ) ) |
|
| 112 | 11 110 111 | sylanbrc | |- ( ph -> P : I --> RR ) |
| 113 | reex | |- RR e. _V |
|
| 114 | elmapg | |- ( ( RR e. _V /\ I e. Fin ) -> ( P e. ( RR ^m I ) <-> P : I --> RR ) ) |
|
| 115 | 113 4 114 | sylancr | |- ( ph -> ( P e. ( RR ^m I ) <-> P : I --> RR ) ) |
| 116 | 112 115 | mpbird | |- ( ph -> P e. ( RR ^m I ) ) |
| 117 | 116 1 | eleqtrrdi | |- ( ph -> P e. X ) |
| 118 | 1nn | |- 1 e. NN |
|
| 119 | 4 | ad2antrr | |- ( ( ( ph /\ ( x e. RR+ /\ I = (/) ) ) /\ k e. NN ) -> I e. Fin ) |
| 120 | 20 | adantlr | |- ( ( ( ph /\ ( x e. RR+ /\ I = (/) ) ) /\ k e. NN ) -> ( F ` k ) e. X ) |
| 121 | 117 | ad2antrr | |- ( ( ( ph /\ ( x e. RR+ /\ I = (/) ) ) /\ k e. NN ) -> P e. X ) |
| 122 | 1 | rrnmval | |- ( ( I e. Fin /\ ( F ` k ) e. X /\ P e. X ) -> ( ( F ` k ) ( Rn ` I ) P ) = ( sqrt ` sum_ y e. I ( ( ( ( F ` k ) ` y ) - ( P ` y ) ) ^ 2 ) ) ) |
| 123 | 119 120 121 122 | syl3anc | |- ( ( ( ph /\ ( x e. RR+ /\ I = (/) ) ) /\ k e. NN ) -> ( ( F ` k ) ( Rn ` I ) P ) = ( sqrt ` sum_ y e. I ( ( ( ( F ` k ) ` y ) - ( P ` y ) ) ^ 2 ) ) ) |
| 124 | simplrr | |- ( ( ( ph /\ ( x e. RR+ /\ I = (/) ) ) /\ k e. NN ) -> I = (/) ) |
|
| 125 | 124 | sumeq1d | |- ( ( ( ph /\ ( x e. RR+ /\ I = (/) ) ) /\ k e. NN ) -> sum_ y e. I ( ( ( ( F ` k ) ` y ) - ( P ` y ) ) ^ 2 ) = sum_ y e. (/) ( ( ( ( F ` k ) ` y ) - ( P ` y ) ) ^ 2 ) ) |
| 126 | sum0 | |- sum_ y e. (/) ( ( ( ( F ` k ) ` y ) - ( P ` y ) ) ^ 2 ) = 0 |
|
| 127 | 125 126 | eqtrdi | |- ( ( ( ph /\ ( x e. RR+ /\ I = (/) ) ) /\ k e. NN ) -> sum_ y e. I ( ( ( ( F ` k ) ` y ) - ( P ` y ) ) ^ 2 ) = 0 ) |
| 128 | 127 | fveq2d | |- ( ( ( ph /\ ( x e. RR+ /\ I = (/) ) ) /\ k e. NN ) -> ( sqrt ` sum_ y e. I ( ( ( ( F ` k ) ` y ) - ( P ` y ) ) ^ 2 ) ) = ( sqrt ` 0 ) ) |
| 129 | 123 128 | eqtrd | |- ( ( ( ph /\ ( x e. RR+ /\ I = (/) ) ) /\ k e. NN ) -> ( ( F ` k ) ( Rn ` I ) P ) = ( sqrt ` 0 ) ) |
| 130 | sqrt0 | |- ( sqrt ` 0 ) = 0 |
|
| 131 | 129 130 | eqtrdi | |- ( ( ( ph /\ ( x e. RR+ /\ I = (/) ) ) /\ k e. NN ) -> ( ( F ` k ) ( Rn ` I ) P ) = 0 ) |
| 132 | simplrl | |- ( ( ( ph /\ ( x e. RR+ /\ I = (/) ) ) /\ k e. NN ) -> x e. RR+ ) |
|
| 133 | 132 | rpgt0d | |- ( ( ( ph /\ ( x e. RR+ /\ I = (/) ) ) /\ k e. NN ) -> 0 < x ) |
| 134 | 131 133 | eqbrtrd | |- ( ( ( ph /\ ( x e. RR+ /\ I = (/) ) ) /\ k e. NN ) -> ( ( F ` k ) ( Rn ` I ) P ) < x ) |
| 135 | 134 | ralrimiva | |- ( ( ph /\ ( x e. RR+ /\ I = (/) ) ) -> A. k e. NN ( ( F ` k ) ( Rn ` I ) P ) < x ) |
| 136 | fveq2 | |- ( j = 1 -> ( ZZ>= ` j ) = ( ZZ>= ` 1 ) ) |
|
| 137 | 136 12 | eqtr4di | |- ( j = 1 -> ( ZZ>= ` j ) = NN ) |
| 138 | 137 | raleqdv | |- ( j = 1 -> ( A. k e. ( ZZ>= ` j ) ( ( F ` k ) ( Rn ` I ) P ) < x <-> A. k e. NN ( ( F ` k ) ( Rn ` I ) P ) < x ) ) |
| 139 | 138 | rspcev | |- ( ( 1 e. NN /\ A. k e. NN ( ( F ` k ) ( Rn ` I ) P ) < x ) -> E. j e. NN A. k e. ( ZZ>= ` j ) ( ( F ` k ) ( Rn ` I ) P ) < x ) |
| 140 | 118 135 139 | sylancr | |- ( ( ph /\ ( x e. RR+ /\ I = (/) ) ) -> E. j e. NN A. k e. ( ZZ>= ` j ) ( ( F ` k ) ( Rn ` I ) P ) < x ) |
| 141 | 140 | expr | |- ( ( ph /\ x e. RR+ ) -> ( I = (/) -> E. j e. NN A. k e. ( ZZ>= ` j ) ( ( F ` k ) ( Rn ` I ) P ) < x ) ) |
| 142 | 1zzd | |- ( ( ( ph /\ ( x e. RR+ /\ I =/= (/) ) ) /\ n e. I ) -> 1 e. ZZ ) |
|
| 143 | simprl | |- ( ( ph /\ ( x e. RR+ /\ I =/= (/) ) ) -> x e. RR+ ) |
|
| 144 | simprr | |- ( ( ph /\ ( x e. RR+ /\ I =/= (/) ) ) -> I =/= (/) ) |
|
| 145 | 4 | adantr | |- ( ( ph /\ ( x e. RR+ /\ I =/= (/) ) ) -> I e. Fin ) |
| 146 | hashnncl | |- ( I e. Fin -> ( ( # ` I ) e. NN <-> I =/= (/) ) ) |
|
| 147 | 145 146 | syl | |- ( ( ph /\ ( x e. RR+ /\ I =/= (/) ) ) -> ( ( # ` I ) e. NN <-> I =/= (/) ) ) |
| 148 | 144 147 | mpbird | |- ( ( ph /\ ( x e. RR+ /\ I =/= (/) ) ) -> ( # ` I ) e. NN ) |
| 149 | 148 | nnrpd | |- ( ( ph /\ ( x e. RR+ /\ I =/= (/) ) ) -> ( # ` I ) e. RR+ ) |
| 150 | 149 | rpsqrtcld | |- ( ( ph /\ ( x e. RR+ /\ I =/= (/) ) ) -> ( sqrt ` ( # ` I ) ) e. RR+ ) |
| 151 | 143 150 | rpdivcld | |- ( ( ph /\ ( x e. RR+ /\ I =/= (/) ) ) -> ( x / ( sqrt ` ( # ` I ) ) ) e. RR+ ) |
| 152 | 151 | adantr | |- ( ( ( ph /\ ( x e. RR+ /\ I =/= (/) ) ) /\ n e. I ) -> ( x / ( sqrt ` ( # ` I ) ) ) e. RR+ ) |
| 153 | 18 | adantl | |- ( ( ( ( ph /\ ( x e. RR+ /\ I =/= (/) ) ) /\ n e. I ) /\ k e. NN ) -> ( ( t e. NN |-> ( ( F ` t ) ` n ) ) ` k ) = ( ( F ` k ) ` n ) ) |
| 154 | 108 | adantlr | |- ( ( ( ph /\ ( x e. RR+ /\ I =/= (/) ) ) /\ n e. I ) -> ( t e. NN |-> ( ( F ` t ) ` n ) ) ~~> ( P ` n ) ) |
| 155 | 12 142 152 153 154 | climi2 | |- ( ( ( ph /\ ( x e. RR+ /\ I =/= (/) ) ) /\ n e. I ) -> E. j e. NN A. k e. ( ZZ>= ` j ) ( abs ` ( ( ( F ` k ) ` n ) - ( P ` n ) ) ) < ( x / ( sqrt ` ( # ` I ) ) ) ) |
| 156 | 1z | |- 1 e. ZZ |
|
| 157 | 12 | rexuz3 | |- ( 1 e. ZZ -> ( E. j e. NN A. k e. ( ZZ>= ` j ) ( ( ( F ` k ) ` n ) M ( P ` n ) ) < ( x / ( sqrt ` ( # ` I ) ) ) <-> E. j e. ZZ A. k e. ( ZZ>= ` j ) ( ( ( F ` k ) ` n ) M ( P ` n ) ) < ( x / ( sqrt ` ( # ` I ) ) ) ) ) |
| 158 | 156 157 | ax-mp | |- ( E. j e. NN A. k e. ( ZZ>= ` j ) ( ( ( F ` k ) ` n ) M ( P ` n ) ) < ( x / ( sqrt ` ( # ` I ) ) ) <-> E. j e. ZZ A. k e. ( ZZ>= ` j ) ( ( ( F ` k ) ` n ) M ( P ` n ) ) < ( x / ( sqrt ` ( # ` I ) ) ) ) |
| 159 | 25 | adantllr | |- ( ( ( ( ph /\ ( x e. RR+ /\ I =/= (/) ) ) /\ n e. I ) /\ k e. NN ) -> ( ( F ` k ) ` n ) e. RR ) |
| 160 | 109 | adantlr | |- ( ( ( ph /\ ( x e. RR+ /\ I =/= (/) ) ) /\ n e. I ) -> ( P ` n ) e. RR ) |
| 161 | 160 | adantr | |- ( ( ( ( ph /\ ( x e. RR+ /\ I =/= (/) ) ) /\ n e. I ) /\ k e. NN ) -> ( P ` n ) e. RR ) |
| 162 | 2 | remetdval | |- ( ( ( ( F ` k ) ` n ) e. RR /\ ( P ` n ) e. RR ) -> ( ( ( F ` k ) ` n ) M ( P ` n ) ) = ( abs ` ( ( ( F ` k ) ` n ) - ( P ` n ) ) ) ) |
| 163 | 159 161 162 | syl2anc | |- ( ( ( ( ph /\ ( x e. RR+ /\ I =/= (/) ) ) /\ n e. I ) /\ k e. NN ) -> ( ( ( F ` k ) ` n ) M ( P ` n ) ) = ( abs ` ( ( ( F ` k ) ` n ) - ( P ` n ) ) ) ) |
| 164 | 163 | breq1d | |- ( ( ( ( ph /\ ( x e. RR+ /\ I =/= (/) ) ) /\ n e. I ) /\ k e. NN ) -> ( ( ( ( F ` k ) ` n ) M ( P ` n ) ) < ( x / ( sqrt ` ( # ` I ) ) ) <-> ( abs ` ( ( ( F ` k ) ` n ) - ( P ` n ) ) ) < ( x / ( sqrt ` ( # ` I ) ) ) ) ) |
| 165 | 41 164 | sylan2 | |- ( ( ( ( ph /\ ( x e. RR+ /\ I =/= (/) ) ) /\ n e. I ) /\ ( j e. NN /\ k e. ( ZZ>= ` j ) ) ) -> ( ( ( ( F ` k ) ` n ) M ( P ` n ) ) < ( x / ( sqrt ` ( # ` I ) ) ) <-> ( abs ` ( ( ( F ` k ) ` n ) - ( P ` n ) ) ) < ( x / ( sqrt ` ( # ` I ) ) ) ) ) |
| 166 | 165 | anassrs | |- ( ( ( ( ( ph /\ ( x e. RR+ /\ I =/= (/) ) ) /\ n e. I ) /\ j e. NN ) /\ k e. ( ZZ>= ` j ) ) -> ( ( ( ( F ` k ) ` n ) M ( P ` n ) ) < ( x / ( sqrt ` ( # ` I ) ) ) <-> ( abs ` ( ( ( F ` k ) ` n ) - ( P ` n ) ) ) < ( x / ( sqrt ` ( # ` I ) ) ) ) ) |
| 167 | 166 | ralbidva | |- ( ( ( ( ph /\ ( x e. RR+ /\ I =/= (/) ) ) /\ n e. I ) /\ j e. NN ) -> ( A. k e. ( ZZ>= ` j ) ( ( ( F ` k ) ` n ) M ( P ` n ) ) < ( x / ( sqrt ` ( # ` I ) ) ) <-> A. k e. ( ZZ>= ` j ) ( abs ` ( ( ( F ` k ) ` n ) - ( P ` n ) ) ) < ( x / ( sqrt ` ( # ` I ) ) ) ) ) |
| 168 | 167 | rexbidva | |- ( ( ( ph /\ ( x e. RR+ /\ I =/= (/) ) ) /\ n e. I ) -> ( E. j e. NN A. k e. ( ZZ>= ` j ) ( ( ( F ` k ) ` n ) M ( P ` n ) ) < ( x / ( sqrt ` ( # ` I ) ) ) <-> E. j e. NN A. k e. ( ZZ>= ` j ) ( abs ` ( ( ( F ` k ) ` n ) - ( P ` n ) ) ) < ( x / ( sqrt ` ( # ` I ) ) ) ) ) |
| 169 | 158 168 | bitr3id | |- ( ( ( ph /\ ( x e. RR+ /\ I =/= (/) ) ) /\ n e. I ) -> ( E. j e. ZZ A. k e. ( ZZ>= ` j ) ( ( ( F ` k ) ` n ) M ( P ` n ) ) < ( x / ( sqrt ` ( # ` I ) ) ) <-> E. j e. NN A. k e. ( ZZ>= ` j ) ( abs ` ( ( ( F ` k ) ` n ) - ( P ` n ) ) ) < ( x / ( sqrt ` ( # ` I ) ) ) ) ) |
| 170 | 155 169 | mpbird | |- ( ( ( ph /\ ( x e. RR+ /\ I =/= (/) ) ) /\ n e. I ) -> E. j e. ZZ A. k e. ( ZZ>= ` j ) ( ( ( F ` k ) ` n ) M ( P ` n ) ) < ( x / ( sqrt ` ( # ` I ) ) ) ) |
| 171 | 170 | ralrimiva | |- ( ( ph /\ ( x e. RR+ /\ I =/= (/) ) ) -> A. n e. I E. j e. ZZ A. k e. ( ZZ>= ` j ) ( ( ( F ` k ) ` n ) M ( P ` n ) ) < ( x / ( sqrt ` ( # ` I ) ) ) ) |
| 172 | 12 | rexuz3 | |- ( 1 e. ZZ -> ( E. j e. NN A. k e. ( ZZ>= ` j ) A. n e. I ( ( ( F ` k ) ` n ) M ( P ` n ) ) < ( x / ( sqrt ` ( # ` I ) ) ) <-> E. j e. ZZ A. k e. ( ZZ>= ` j ) A. n e. I ( ( ( F ` k ) ` n ) M ( P ` n ) ) < ( x / ( sqrt ` ( # ` I ) ) ) ) ) |
| 173 | 156 172 | ax-mp | |- ( E. j e. NN A. k e. ( ZZ>= ` j ) A. n e. I ( ( ( F ` k ) ` n ) M ( P ` n ) ) < ( x / ( sqrt ` ( # ` I ) ) ) <-> E. j e. ZZ A. k e. ( ZZ>= ` j ) A. n e. I ( ( ( F ` k ) ` n ) M ( P ` n ) ) < ( x / ( sqrt ` ( # ` I ) ) ) ) |
| 174 | rexfiuz | |- ( I e. Fin -> ( E. j e. ZZ A. k e. ( ZZ>= ` j ) A. n e. I ( ( ( F ` k ) ` n ) M ( P ` n ) ) < ( x / ( sqrt ` ( # ` I ) ) ) <-> A. n e. I E. j e. ZZ A. k e. ( ZZ>= ` j ) ( ( ( F ` k ) ` n ) M ( P ` n ) ) < ( x / ( sqrt ` ( # ` I ) ) ) ) ) |
|
| 175 | 145 174 | syl | |- ( ( ph /\ ( x e. RR+ /\ I =/= (/) ) ) -> ( E. j e. ZZ A. k e. ( ZZ>= ` j ) A. n e. I ( ( ( F ` k ) ` n ) M ( P ` n ) ) < ( x / ( sqrt ` ( # ` I ) ) ) <-> A. n e. I E. j e. ZZ A. k e. ( ZZ>= ` j ) ( ( ( F ` k ) ` n ) M ( P ` n ) ) < ( x / ( sqrt ` ( # ` I ) ) ) ) ) |
| 176 | 173 175 | bitrid | |- ( ( ph /\ ( x e. RR+ /\ I =/= (/) ) ) -> ( E. j e. NN A. k e. ( ZZ>= ` j ) A. n e. I ( ( ( F ` k ) ` n ) M ( P ` n ) ) < ( x / ( sqrt ` ( # ` I ) ) ) <-> A. n e. I E. j e. ZZ A. k e. ( ZZ>= ` j ) ( ( ( F ` k ) ` n ) M ( P ` n ) ) < ( x / ( sqrt ` ( # ` I ) ) ) ) ) |
| 177 | 171 176 | mpbird | |- ( ( ph /\ ( x e. RR+ /\ I =/= (/) ) ) -> E. j e. NN A. k e. ( ZZ>= ` j ) A. n e. I ( ( ( F ` k ) ` n ) M ( P ` n ) ) < ( x / ( sqrt ` ( # ` I ) ) ) ) |
| 178 | 4 | ad2antrr | |- ( ( ( ph /\ ( x e. RR+ /\ I =/= (/) ) ) /\ k e. NN ) -> I e. Fin ) |
| 179 | simplrr | |- ( ( ( ph /\ ( x e. RR+ /\ I =/= (/) ) ) /\ k e. NN ) -> I =/= (/) ) |
|
| 180 | eldifsn | |- ( I e. ( Fin \ { (/) } ) <-> ( I e. Fin /\ I =/= (/) ) ) |
|
| 181 | 178 179 180 | sylanbrc | |- ( ( ( ph /\ ( x e. RR+ /\ I =/= (/) ) ) /\ k e. NN ) -> I e. ( Fin \ { (/) } ) ) |
| 182 | 6 | adantr | |- ( ( ph /\ ( x e. RR+ /\ I =/= (/) ) ) -> F : NN --> X ) |
| 183 | 182 | ffvelcdmda | |- ( ( ( ph /\ ( x e. RR+ /\ I =/= (/) ) ) /\ k e. NN ) -> ( F ` k ) e. X ) |
| 184 | 117 | ad2antrr | |- ( ( ( ph /\ ( x e. RR+ /\ I =/= (/) ) ) /\ k e. NN ) -> P e. X ) |
| 185 | 151 | adantr | |- ( ( ( ph /\ ( x e. RR+ /\ I =/= (/) ) ) /\ k e. NN ) -> ( x / ( sqrt ` ( # ` I ) ) ) e. RR+ ) |
| 186 | 1 2 | rrndstprj2 | |- ( ( ( I e. ( Fin \ { (/) } ) /\ ( F ` k ) e. X /\ P e. X ) /\ ( ( x / ( sqrt ` ( # ` I ) ) ) e. RR+ /\ A. n e. I ( ( ( F ` k ) ` n ) M ( P ` n ) ) < ( x / ( sqrt ` ( # ` I ) ) ) ) ) -> ( ( F ` k ) ( Rn ` I ) P ) < ( ( x / ( sqrt ` ( # ` I ) ) ) x. ( sqrt ` ( # ` I ) ) ) ) |
| 187 | 186 | expr | |- ( ( ( I e. ( Fin \ { (/) } ) /\ ( F ` k ) e. X /\ P e. X ) /\ ( x / ( sqrt ` ( # ` I ) ) ) e. RR+ ) -> ( A. n e. I ( ( ( F ` k ) ` n ) M ( P ` n ) ) < ( x / ( sqrt ` ( # ` I ) ) ) -> ( ( F ` k ) ( Rn ` I ) P ) < ( ( x / ( sqrt ` ( # ` I ) ) ) x. ( sqrt ` ( # ` I ) ) ) ) ) |
| 188 | 181 183 184 185 187 | syl31anc | |- ( ( ( ph /\ ( x e. RR+ /\ I =/= (/) ) ) /\ k e. NN ) -> ( A. n e. I ( ( ( F ` k ) ` n ) M ( P ` n ) ) < ( x / ( sqrt ` ( # ` I ) ) ) -> ( ( F ` k ) ( Rn ` I ) P ) < ( ( x / ( sqrt ` ( # ` I ) ) ) x. ( sqrt ` ( # ` I ) ) ) ) ) |
| 189 | simplrl | |- ( ( ( ph /\ ( x e. RR+ /\ I =/= (/) ) ) /\ k e. NN ) -> x e. RR+ ) |
|
| 190 | 189 | rpcnd | |- ( ( ( ph /\ ( x e. RR+ /\ I =/= (/) ) ) /\ k e. NN ) -> x e. CC ) |
| 191 | 150 | adantr | |- ( ( ( ph /\ ( x e. RR+ /\ I =/= (/) ) ) /\ k e. NN ) -> ( sqrt ` ( # ` I ) ) e. RR+ ) |
| 192 | 191 | rpcnd | |- ( ( ( ph /\ ( x e. RR+ /\ I =/= (/) ) ) /\ k e. NN ) -> ( sqrt ` ( # ` I ) ) e. CC ) |
| 193 | 191 | rpne0d | |- ( ( ( ph /\ ( x e. RR+ /\ I =/= (/) ) ) /\ k e. NN ) -> ( sqrt ` ( # ` I ) ) =/= 0 ) |
| 194 | 190 192 193 | divcan1d | |- ( ( ( ph /\ ( x e. RR+ /\ I =/= (/) ) ) /\ k e. NN ) -> ( ( x / ( sqrt ` ( # ` I ) ) ) x. ( sqrt ` ( # ` I ) ) ) = x ) |
| 195 | 194 | breq2d | |- ( ( ( ph /\ ( x e. RR+ /\ I =/= (/) ) ) /\ k e. NN ) -> ( ( ( F ` k ) ( Rn ` I ) P ) < ( ( x / ( sqrt ` ( # ` I ) ) ) x. ( sqrt ` ( # ` I ) ) ) <-> ( ( F ` k ) ( Rn ` I ) P ) < x ) ) |
| 196 | 188 195 | sylibd | |- ( ( ( ph /\ ( x e. RR+ /\ I =/= (/) ) ) /\ k e. NN ) -> ( A. n e. I ( ( ( F ` k ) ` n ) M ( P ` n ) ) < ( x / ( sqrt ` ( # ` I ) ) ) -> ( ( F ` k ) ( Rn ` I ) P ) < x ) ) |
| 197 | 41 196 | sylan2 | |- ( ( ( ph /\ ( x e. RR+ /\ I =/= (/) ) ) /\ ( j e. NN /\ k e. ( ZZ>= ` j ) ) ) -> ( A. n e. I ( ( ( F ` k ) ` n ) M ( P ` n ) ) < ( x / ( sqrt ` ( # ` I ) ) ) -> ( ( F ` k ) ( Rn ` I ) P ) < x ) ) |
| 198 | 197 | anassrs | |- ( ( ( ( ph /\ ( x e. RR+ /\ I =/= (/) ) ) /\ j e. NN ) /\ k e. ( ZZ>= ` j ) ) -> ( A. n e. I ( ( ( F ` k ) ` n ) M ( P ` n ) ) < ( x / ( sqrt ` ( # ` I ) ) ) -> ( ( F ` k ) ( Rn ` I ) P ) < x ) ) |
| 199 | 198 | ralimdva | |- ( ( ( ph /\ ( x e. RR+ /\ I =/= (/) ) ) /\ j e. NN ) -> ( A. k e. ( ZZ>= ` j ) A. n e. I ( ( ( F ` k ) ` n ) M ( P ` n ) ) < ( x / ( sqrt ` ( # ` I ) ) ) -> A. k e. ( ZZ>= ` j ) ( ( F ` k ) ( Rn ` I ) P ) < x ) ) |
| 200 | 199 | reximdva | |- ( ( ph /\ ( x e. RR+ /\ I =/= (/) ) ) -> ( E. j e. NN A. k e. ( ZZ>= ` j ) A. n e. I ( ( ( F ` k ) ` n ) M ( P ` n ) ) < ( x / ( sqrt ` ( # ` I ) ) ) -> E. j e. NN A. k e. ( ZZ>= ` j ) ( ( F ` k ) ( Rn ` I ) P ) < x ) ) |
| 201 | 177 200 | mpd | |- ( ( ph /\ ( x e. RR+ /\ I =/= (/) ) ) -> E. j e. NN A. k e. ( ZZ>= ` j ) ( ( F ` k ) ( Rn ` I ) P ) < x ) |
| 202 | 201 | expr | |- ( ( ph /\ x e. RR+ ) -> ( I =/= (/) -> E. j e. NN A. k e. ( ZZ>= ` j ) ( ( F ` k ) ( Rn ` I ) P ) < x ) ) |
| 203 | 141 202 | pm2.61dne | |- ( ( ph /\ x e. RR+ ) -> E. j e. NN A. k e. ( ZZ>= ` j ) ( ( F ` k ) ( Rn ` I ) P ) < x ) |
| 204 | 203 | ralrimiva | |- ( ph -> A. x e. RR+ E. j e. NN A. k e. ( ZZ>= ` j ) ( ( F ` k ) ( Rn ` I ) P ) < x ) |
| 205 | 3 31 12 32 33 6 | lmmbrf | |- ( ph -> ( F ( ~~>t ` J ) P <-> ( P e. X /\ A. x e. RR+ E. j e. NN A. k e. ( ZZ>= ` j ) ( ( F ` k ) ( Rn ` I ) P ) < x ) ) ) |
| 206 | 117 204 205 | mpbir2and | |- ( ph -> F ( ~~>t ` J ) P ) |
| 207 | releldm | |- ( ( Rel ( ~~>t ` J ) /\ F ( ~~>t ` J ) P ) -> F e. dom ( ~~>t ` J ) ) |
|
| 208 | 8 206 207 | sylancr | |- ( ph -> F e. dom ( ~~>t ` J ) ) |