This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Combine finitely many different upper integer properties into one. (Contributed by Mario Carneiro, 6-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rexfiuz | ⊢ ( 𝐴 ∈ Fin → ( ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑛 ∈ 𝐴 𝜑 ↔ ∀ 𝑛 ∈ 𝐴 ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | raleq | ⊢ ( 𝑥 = ∅ → ( ∀ 𝑛 ∈ 𝑥 𝜑 ↔ ∀ 𝑛 ∈ ∅ 𝜑 ) ) | |
| 2 | 1 | rexralbidv | ⊢ ( 𝑥 = ∅ → ( ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑛 ∈ 𝑥 𝜑 ↔ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑛 ∈ ∅ 𝜑 ) ) |
| 3 | raleq | ⊢ ( 𝑥 = ∅ → ( ∀ 𝑛 ∈ 𝑥 ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 ↔ ∀ 𝑛 ∈ ∅ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 ) ) | |
| 4 | 2 3 | bibi12d | ⊢ ( 𝑥 = ∅ → ( ( ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑛 ∈ 𝑥 𝜑 ↔ ∀ 𝑛 ∈ 𝑥 ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 ) ↔ ( ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑛 ∈ ∅ 𝜑 ↔ ∀ 𝑛 ∈ ∅ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 ) ) ) |
| 5 | raleq | ⊢ ( 𝑥 = 𝑦 → ( ∀ 𝑛 ∈ 𝑥 𝜑 ↔ ∀ 𝑛 ∈ 𝑦 𝜑 ) ) | |
| 6 | 5 | rexralbidv | ⊢ ( 𝑥 = 𝑦 → ( ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑛 ∈ 𝑥 𝜑 ↔ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑛 ∈ 𝑦 𝜑 ) ) |
| 7 | raleq | ⊢ ( 𝑥 = 𝑦 → ( ∀ 𝑛 ∈ 𝑥 ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 ↔ ∀ 𝑛 ∈ 𝑦 ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 ) ) | |
| 8 | 6 7 | bibi12d | ⊢ ( 𝑥 = 𝑦 → ( ( ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑛 ∈ 𝑥 𝜑 ↔ ∀ 𝑛 ∈ 𝑥 ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 ) ↔ ( ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑛 ∈ 𝑦 𝜑 ↔ ∀ 𝑛 ∈ 𝑦 ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 ) ) ) |
| 9 | raleq | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ∀ 𝑛 ∈ 𝑥 𝜑 ↔ ∀ 𝑛 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝜑 ) ) | |
| 10 | 9 | rexralbidv | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑛 ∈ 𝑥 𝜑 ↔ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑛 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝜑 ) ) |
| 11 | raleq | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ∀ 𝑛 ∈ 𝑥 ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 ↔ ∀ 𝑛 ∈ ( 𝑦 ∪ { 𝑧 } ) ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 ) ) | |
| 12 | 10 11 | bibi12d | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑛 ∈ 𝑥 𝜑 ↔ ∀ 𝑛 ∈ 𝑥 ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 ) ↔ ( ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑛 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝜑 ↔ ∀ 𝑛 ∈ ( 𝑦 ∪ { 𝑧 } ) ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 ) ) ) |
| 13 | raleq | ⊢ ( 𝑥 = 𝐴 → ( ∀ 𝑛 ∈ 𝑥 𝜑 ↔ ∀ 𝑛 ∈ 𝐴 𝜑 ) ) | |
| 14 | 13 | rexralbidv | ⊢ ( 𝑥 = 𝐴 → ( ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑛 ∈ 𝑥 𝜑 ↔ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑛 ∈ 𝐴 𝜑 ) ) |
| 15 | raleq | ⊢ ( 𝑥 = 𝐴 → ( ∀ 𝑛 ∈ 𝑥 ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 ↔ ∀ 𝑛 ∈ 𝐴 ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 ) ) | |
| 16 | 14 15 | bibi12d | ⊢ ( 𝑥 = 𝐴 → ( ( ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑛 ∈ 𝑥 𝜑 ↔ ∀ 𝑛 ∈ 𝑥 ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 ) ↔ ( ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑛 ∈ 𝐴 𝜑 ↔ ∀ 𝑛 ∈ 𝐴 ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 ) ) ) |
| 17 | 0z | ⊢ 0 ∈ ℤ | |
| 18 | 17 | ne0ii | ⊢ ℤ ≠ ∅ |
| 19 | ral0 | ⊢ ∀ 𝑛 ∈ ∅ 𝜑 | |
| 20 | 19 | rgen2w | ⊢ ∀ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑛 ∈ ∅ 𝜑 |
| 21 | r19.2z | ⊢ ( ( ℤ ≠ ∅ ∧ ∀ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑛 ∈ ∅ 𝜑 ) → ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑛 ∈ ∅ 𝜑 ) | |
| 22 | 18 20 21 | mp2an | ⊢ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑛 ∈ ∅ 𝜑 |
| 23 | ral0 | ⊢ ∀ 𝑛 ∈ ∅ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 | |
| 24 | 22 23 | 2th | ⊢ ( ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑛 ∈ ∅ 𝜑 ↔ ∀ 𝑛 ∈ ∅ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 ) |
| 25 | anbi1 | ⊢ ( ( ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑛 ∈ 𝑦 𝜑 ↔ ∀ 𝑛 ∈ 𝑦 ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 ) → ( ( ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑛 ∈ 𝑦 𝜑 ∧ ∀ 𝑛 ∈ { 𝑧 } ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 ) ↔ ( ∀ 𝑛 ∈ 𝑦 ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 ∧ ∀ 𝑛 ∈ { 𝑧 } ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 ) ) ) | |
| 26 | rexanuz | ⊢ ( ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ∀ 𝑛 ∈ 𝑦 𝜑 ∧ ∀ 𝑛 ∈ { 𝑧 } 𝜑 ) ↔ ( ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑛 ∈ 𝑦 𝜑 ∧ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑛 ∈ { 𝑧 } 𝜑 ) ) | |
| 27 | ralunb | ⊢ ( ∀ 𝑛 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝜑 ↔ ( ∀ 𝑛 ∈ 𝑦 𝜑 ∧ ∀ 𝑛 ∈ { 𝑧 } 𝜑 ) ) | |
| 28 | 27 | ralbii | ⊢ ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑛 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝜑 ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ∀ 𝑛 ∈ 𝑦 𝜑 ∧ ∀ 𝑛 ∈ { 𝑧 } 𝜑 ) ) |
| 29 | 28 | rexbii | ⊢ ( ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑛 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝜑 ↔ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ∀ 𝑛 ∈ 𝑦 𝜑 ∧ ∀ 𝑛 ∈ { 𝑧 } 𝜑 ) ) |
| 30 | ralsnsg | ⊢ ( 𝑧 ∈ V → ( ∀ 𝑛 ∈ { 𝑧 } ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 ↔ [ 𝑧 / 𝑛 ] ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 ) ) | |
| 31 | sbcrex | ⊢ ( [ 𝑧 / 𝑛 ] ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 ↔ ∃ 𝑗 ∈ ℤ [ 𝑧 / 𝑛 ] ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 ) | |
| 32 | ralcom | ⊢ ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑛 ∈ { 𝑧 } 𝜑 ↔ ∀ 𝑛 ∈ { 𝑧 } ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 ) | |
| 33 | ralsnsg | ⊢ ( 𝑧 ∈ V → ( ∀ 𝑛 ∈ { 𝑧 } ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 ↔ [ 𝑧 / 𝑛 ] ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 ) ) | |
| 34 | 32 33 | bitrid | ⊢ ( 𝑧 ∈ V → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑛 ∈ { 𝑧 } 𝜑 ↔ [ 𝑧 / 𝑛 ] ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 ) ) |
| 35 | 34 | rexbidv | ⊢ ( 𝑧 ∈ V → ( ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑛 ∈ { 𝑧 } 𝜑 ↔ ∃ 𝑗 ∈ ℤ [ 𝑧 / 𝑛 ] ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 ) ) |
| 36 | 31 35 | bitr4id | ⊢ ( 𝑧 ∈ V → ( [ 𝑧 / 𝑛 ] ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 ↔ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑛 ∈ { 𝑧 } 𝜑 ) ) |
| 37 | 30 36 | bitrd | ⊢ ( 𝑧 ∈ V → ( ∀ 𝑛 ∈ { 𝑧 } ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 ↔ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑛 ∈ { 𝑧 } 𝜑 ) ) |
| 38 | 37 | elv | ⊢ ( ∀ 𝑛 ∈ { 𝑧 } ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 ↔ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑛 ∈ { 𝑧 } 𝜑 ) |
| 39 | 38 | anbi2i | ⊢ ( ( ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑛 ∈ 𝑦 𝜑 ∧ ∀ 𝑛 ∈ { 𝑧 } ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 ) ↔ ( ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑛 ∈ 𝑦 𝜑 ∧ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑛 ∈ { 𝑧 } 𝜑 ) ) |
| 40 | 26 29 39 | 3bitr4i | ⊢ ( ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑛 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝜑 ↔ ( ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑛 ∈ 𝑦 𝜑 ∧ ∀ 𝑛 ∈ { 𝑧 } ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 ) ) |
| 41 | ralunb | ⊢ ( ∀ 𝑛 ∈ ( 𝑦 ∪ { 𝑧 } ) ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 ↔ ( ∀ 𝑛 ∈ 𝑦 ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 ∧ ∀ 𝑛 ∈ { 𝑧 } ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 ) ) | |
| 42 | 25 40 41 | 3bitr4g | ⊢ ( ( ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑛 ∈ 𝑦 𝜑 ↔ ∀ 𝑛 ∈ 𝑦 ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 ) → ( ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑛 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝜑 ↔ ∀ 𝑛 ∈ ( 𝑦 ∪ { 𝑧 } ) ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 ) ) |
| 43 | 42 | a1i | ⊢ ( 𝑦 ∈ Fin → ( ( ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑛 ∈ 𝑦 𝜑 ↔ ∀ 𝑛 ∈ 𝑦 ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 ) → ( ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑛 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝜑 ↔ ∀ 𝑛 ∈ ( 𝑦 ∪ { 𝑧 } ) ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 ) ) ) |
| 44 | 4 8 12 16 24 43 | findcard2 | ⊢ ( 𝐴 ∈ Fin → ( ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑛 ∈ 𝐴 𝜑 ↔ ∀ 𝑛 ∈ 𝐴 ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 ) ) |