This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Express the property " F is a Cauchy sequence of metric D " presupposing F is a function. (Contributed by NM, 24-Jul-2007) (Revised by Mario Carneiro, 23-Dec-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iscau3.2 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| iscau3.3 | ⊢ ( 𝜑 → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) | ||
| iscau3.4 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| iscau4.5 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = 𝐴 ) | ||
| iscau4.6 | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑗 ) = 𝐵 ) | ||
| iscauf.7 | ⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ 𝑋 ) | ||
| Assertion | iscauf | ⊢ ( 𝜑 → ( 𝐹 ∈ ( Cau ‘ 𝐷 ) ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐵 𝐷 𝐴 ) < 𝑥 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscau3.2 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | iscau3.3 | ⊢ ( 𝜑 → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) | |
| 3 | iscau3.4 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 4 | iscau4.5 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = 𝐴 ) | |
| 5 | iscau4.6 | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑗 ) = 𝐵 ) | |
| 6 | iscauf.7 | ⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ 𝑋 ) | |
| 7 | elfvdm | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝑋 ∈ dom ∞Met ) | |
| 8 | 2 7 | syl | ⊢ ( 𝜑 → 𝑋 ∈ dom ∞Met ) |
| 9 | cnex | ⊢ ℂ ∈ V | |
| 10 | 8 9 | jctir | ⊢ ( 𝜑 → ( 𝑋 ∈ dom ∞Met ∧ ℂ ∈ V ) ) |
| 11 | uzssz | ⊢ ( ℤ≥ ‘ 𝑀 ) ⊆ ℤ | |
| 12 | zsscn | ⊢ ℤ ⊆ ℂ | |
| 13 | 11 12 | sstri | ⊢ ( ℤ≥ ‘ 𝑀 ) ⊆ ℂ |
| 14 | 1 13 | eqsstri | ⊢ 𝑍 ⊆ ℂ |
| 15 | 6 14 | jctir | ⊢ ( 𝜑 → ( 𝐹 : 𝑍 ⟶ 𝑋 ∧ 𝑍 ⊆ ℂ ) ) |
| 16 | elpm2r | ⊢ ( ( ( 𝑋 ∈ dom ∞Met ∧ ℂ ∈ V ) ∧ ( 𝐹 : 𝑍 ⟶ 𝑋 ∧ 𝑍 ⊆ ℂ ) ) → 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ) | |
| 17 | 10 15 16 | syl2anc | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ) |
| 18 | 17 | biantrurd | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ 𝐴 ∈ 𝑋 ∧ ( 𝐴 𝐷 𝐵 ) < 𝑥 ) ↔ ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ 𝐴 ∈ 𝑋 ∧ ( 𝐴 𝐷 𝐵 ) < 𝑥 ) ) ) ) |
| 19 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 20 | 5 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( 𝐹 ‘ 𝑗 ) = 𝐵 ) |
| 21 | 6 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 𝐹 : 𝑍 ⟶ 𝑋 ) |
| 22 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 𝑗 ∈ 𝑍 ) | |
| 23 | 21 22 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ) |
| 24 | 20 23 | eqeltrrd | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 𝐵 ∈ 𝑋 ) |
| 25 | 1 | uztrn2 | ⊢ ( ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑘 ∈ 𝑍 ) |
| 26 | 25 4 | sylan2 | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( 𝐹 ‘ 𝑘 ) = 𝐴 ) |
| 27 | ffvelcdm | ⊢ ( ( 𝐹 : 𝑍 ⟶ 𝑋 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) | |
| 28 | 6 25 27 | syl2an | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) |
| 29 | 26 28 | eqeltrrd | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 𝐴 ∈ 𝑋 ) |
| 30 | xmetsym | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( 𝐵 𝐷 𝐴 ) = ( 𝐴 𝐷 𝐵 ) ) | |
| 31 | 19 24 29 30 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( 𝐵 𝐷 𝐴 ) = ( 𝐴 𝐷 𝐵 ) ) |
| 32 | 31 | breq1d | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( 𝐵 𝐷 𝐴 ) < 𝑥 ↔ ( 𝐴 𝐷 𝐵 ) < 𝑥 ) ) |
| 33 | fdm | ⊢ ( 𝐹 : 𝑍 ⟶ 𝑋 → dom 𝐹 = 𝑍 ) | |
| 34 | 33 | eleq2d | ⊢ ( 𝐹 : 𝑍 ⟶ 𝑋 → ( 𝑘 ∈ dom 𝐹 ↔ 𝑘 ∈ 𝑍 ) ) |
| 35 | 34 | biimpar | ⊢ ( ( 𝐹 : 𝑍 ⟶ 𝑋 ∧ 𝑘 ∈ 𝑍 ) → 𝑘 ∈ dom 𝐹 ) |
| 36 | 6 25 35 | syl2an | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 𝑘 ∈ dom 𝐹 ) |
| 37 | 36 29 | jca | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( 𝑘 ∈ dom 𝐹 ∧ 𝐴 ∈ 𝑋 ) ) |
| 38 | 37 | biantrurd | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( 𝐴 𝐷 𝐵 ) < 𝑥 ↔ ( ( 𝑘 ∈ dom 𝐹 ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐴 𝐷 𝐵 ) < 𝑥 ) ) ) |
| 39 | df-3an | ⊢ ( ( 𝑘 ∈ dom 𝐹 ∧ 𝐴 ∈ 𝑋 ∧ ( 𝐴 𝐷 𝐵 ) < 𝑥 ) ↔ ( ( 𝑘 ∈ dom 𝐹 ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐴 𝐷 𝐵 ) < 𝑥 ) ) | |
| 40 | 38 39 | bitr4di | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( 𝐴 𝐷 𝐵 ) < 𝑥 ↔ ( 𝑘 ∈ dom 𝐹 ∧ 𝐴 ∈ 𝑋 ∧ ( 𝐴 𝐷 𝐵 ) < 𝑥 ) ) ) |
| 41 | 32 40 | bitrd | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( 𝐵 𝐷 𝐴 ) < 𝑥 ↔ ( 𝑘 ∈ dom 𝐹 ∧ 𝐴 ∈ 𝑋 ∧ ( 𝐴 𝐷 𝐵 ) < 𝑥 ) ) ) |
| 42 | 41 | anassrs | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( 𝐵 𝐷 𝐴 ) < 𝑥 ↔ ( 𝑘 ∈ dom 𝐹 ∧ 𝐴 ∈ 𝑋 ∧ ( 𝐴 𝐷 𝐵 ) < 𝑥 ) ) ) |
| 43 | 42 | ralbidva | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐵 𝐷 𝐴 ) < 𝑥 ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ 𝐴 ∈ 𝑋 ∧ ( 𝐴 𝐷 𝐵 ) < 𝑥 ) ) ) |
| 44 | 43 | rexbidva | ⊢ ( 𝜑 → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐵 𝐷 𝐴 ) < 𝑥 ↔ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ 𝐴 ∈ 𝑋 ∧ ( 𝐴 𝐷 𝐵 ) < 𝑥 ) ) ) |
| 45 | 44 | ralbidv | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐵 𝐷 𝐴 ) < 𝑥 ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ 𝐴 ∈ 𝑋 ∧ ( 𝐴 𝐷 𝐵 ) < 𝑥 ) ) ) |
| 46 | 1 2 3 4 5 | iscau4 | ⊢ ( 𝜑 → ( 𝐹 ∈ ( Cau ‘ 𝐷 ) ↔ ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ 𝐴 ∈ 𝑋 ∧ ( 𝐴 𝐷 𝐵 ) < 𝑥 ) ) ) ) |
| 47 | 18 45 46 | 3bitr4rd | ⊢ ( 𝜑 → ( 𝐹 ∈ ( Cau ‘ 𝐷 ) ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐵 𝐷 𝐴 ) < 𝑥 ) ) |