This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restrict the base of the upper integers set to another upper integers set. (Contributed by Mario Carneiro, 26-Dec-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | rexuz3.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| Assertion | rexuz3 | ⊢ ( 𝑀 ∈ ℤ → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 ↔ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexuz3.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | ralel | ⊢ ∀ 𝑘 ∈ 𝑍 𝑘 ∈ 𝑍 | |
| 3 | fveq2 | ⊢ ( 𝑗 = 𝑀 → ( ℤ≥ ‘ 𝑗 ) = ( ℤ≥ ‘ 𝑀 ) ) | |
| 4 | 3 1 | eqtr4di | ⊢ ( 𝑗 = 𝑀 → ( ℤ≥ ‘ 𝑗 ) = 𝑍 ) |
| 5 | 4 | raleqdv | ⊢ ( 𝑗 = 𝑀 → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑘 ∈ 𝑍 ↔ ∀ 𝑘 ∈ 𝑍 𝑘 ∈ 𝑍 ) ) |
| 6 | 5 | rspcev | ⊢ ( ( 𝑀 ∈ ℤ ∧ ∀ 𝑘 ∈ 𝑍 𝑘 ∈ 𝑍 ) → ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑘 ∈ 𝑍 ) |
| 7 | 2 6 | mpan2 | ⊢ ( 𝑀 ∈ ℤ → ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑘 ∈ 𝑍 ) |
| 8 | 7 | biantrurd | ⊢ ( 𝑀 ∈ ℤ → ( ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 ↔ ( ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑘 ∈ 𝑍 ∧ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 ) ) ) |
| 9 | 1 | uztrn2 | ⊢ ( ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑘 ∈ 𝑍 ) |
| 10 | 9 | a1d | ⊢ ( ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝜑 → 𝑘 ∈ 𝑍 ) ) |
| 11 | 10 | ancrd | ⊢ ( ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝜑 → ( 𝑘 ∈ 𝑍 ∧ 𝜑 ) ) ) |
| 12 | 11 | ralimdva | ⊢ ( 𝑗 ∈ 𝑍 → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ 𝑍 ∧ 𝜑 ) ) ) |
| 13 | eluzelz | ⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑗 ∈ ℤ ) | |
| 14 | 13 1 | eleq2s | ⊢ ( 𝑗 ∈ 𝑍 → 𝑗 ∈ ℤ ) |
| 15 | 12 14 | jctild | ⊢ ( 𝑗 ∈ 𝑍 → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 → ( 𝑗 ∈ ℤ ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ 𝑍 ∧ 𝜑 ) ) ) ) |
| 16 | 15 | imp | ⊢ ( ( 𝑗 ∈ 𝑍 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 ) → ( 𝑗 ∈ ℤ ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ 𝑍 ∧ 𝜑 ) ) ) |
| 17 | uzid | ⊢ ( 𝑗 ∈ ℤ → 𝑗 ∈ ( ℤ≥ ‘ 𝑗 ) ) | |
| 18 | simpl | ⊢ ( ( 𝑘 ∈ 𝑍 ∧ 𝜑 ) → 𝑘 ∈ 𝑍 ) | |
| 19 | 18 | ralimi | ⊢ ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ 𝑍 ∧ 𝜑 ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑘 ∈ 𝑍 ) |
| 20 | eleq1w | ⊢ ( 𝑘 = 𝑗 → ( 𝑘 ∈ 𝑍 ↔ 𝑗 ∈ 𝑍 ) ) | |
| 21 | 20 | rspcva | ⊢ ( ( 𝑗 ∈ ( ℤ≥ ‘ 𝑗 ) ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑘 ∈ 𝑍 ) → 𝑗 ∈ 𝑍 ) |
| 22 | 17 19 21 | syl2an | ⊢ ( ( 𝑗 ∈ ℤ ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ 𝑍 ∧ 𝜑 ) ) → 𝑗 ∈ 𝑍 ) |
| 23 | simpr | ⊢ ( ( 𝑘 ∈ 𝑍 ∧ 𝜑 ) → 𝜑 ) | |
| 24 | 23 | ralimi | ⊢ ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ 𝑍 ∧ 𝜑 ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 ) |
| 25 | 24 | adantl | ⊢ ( ( 𝑗 ∈ ℤ ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ 𝑍 ∧ 𝜑 ) ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 ) |
| 26 | 22 25 | jca | ⊢ ( ( 𝑗 ∈ ℤ ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ 𝑍 ∧ 𝜑 ) ) → ( 𝑗 ∈ 𝑍 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 ) ) |
| 27 | 16 26 | impbii | ⊢ ( ( 𝑗 ∈ 𝑍 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 ) ↔ ( 𝑗 ∈ ℤ ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ 𝑍 ∧ 𝜑 ) ) ) |
| 28 | 27 | rexbii2 | ⊢ ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 ↔ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ 𝑍 ∧ 𝜑 ) ) |
| 29 | rexanuz | ⊢ ( ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ 𝑍 ∧ 𝜑 ) ↔ ( ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑘 ∈ 𝑍 ∧ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 ) ) | |
| 30 | 28 29 | bitr2i | ⊢ ( ( ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑘 ∈ 𝑍 ∧ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 ) ↔ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 ) |
| 31 | 8 30 | bitr2di | ⊢ ( 𝑀 ∈ ℤ → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 ↔ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 ) ) |