This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the distance function of the metric space of real numbers. (Contributed by NM, 16-May-2007)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | remet.1 | ⊢ 𝐷 = ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) | |
| Assertion | remetdval | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 𝐷 𝐵 ) = ( abs ‘ ( 𝐴 − 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | remet.1 | ⊢ 𝐷 = ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) | |
| 2 | df-ov | ⊢ ( 𝐴 𝐷 𝐵 ) = ( 𝐷 ‘ 〈 𝐴 , 𝐵 〉 ) | |
| 3 | 1 | fveq1i | ⊢ ( 𝐷 ‘ 〈 𝐴 , 𝐵 〉 ) = ( ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ‘ 〈 𝐴 , 𝐵 〉 ) |
| 4 | 2 3 | eqtri | ⊢ ( 𝐴 𝐷 𝐵 ) = ( ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ‘ 〈 𝐴 , 𝐵 〉 ) |
| 5 | opelxpi | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 〈 𝐴 , 𝐵 〉 ∈ ( ℝ × ℝ ) ) | |
| 6 | 5 | fvresd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ‘ 〈 𝐴 , 𝐵 〉 ) = ( ( abs ∘ − ) ‘ 〈 𝐴 , 𝐵 〉 ) ) |
| 7 | df-ov | ⊢ ( 𝐴 ( abs ∘ − ) 𝐵 ) = ( ( abs ∘ − ) ‘ 〈 𝐴 , 𝐵 〉 ) | |
| 8 | recn | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) | |
| 9 | recn | ⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℂ ) | |
| 10 | eqid | ⊢ ( abs ∘ − ) = ( abs ∘ − ) | |
| 11 | 10 | cnmetdval | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 ( abs ∘ − ) 𝐵 ) = ( abs ‘ ( 𝐴 − 𝐵 ) ) ) |
| 12 | 8 9 11 | syl2an | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 ( abs ∘ − ) 𝐵 ) = ( abs ‘ ( 𝐴 − 𝐵 ) ) ) |
| 13 | 7 12 | eqtr3id | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( abs ∘ − ) ‘ 〈 𝐴 , 𝐵 〉 ) = ( abs ‘ ( 𝐴 − 𝐵 ) ) ) |
| 14 | 6 13 | eqtrd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ‘ 〈 𝐴 , 𝐵 〉 ) = ( abs ‘ ( 𝐴 − 𝐵 ) ) ) |
| 15 | 4 14 | eqtrid | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 𝐷 𝐵 ) = ( abs ‘ ( 𝐴 − 𝐵 ) ) ) |