This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the Euclidean metric. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 13-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | rrnval.1 | ⊢ 𝑋 = ( ℝ ↑m 𝐼 ) | |
| Assertion | rrnmval | ⊢ ( ( 𝐼 ∈ Fin ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) → ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) = ( √ ‘ Σ 𝑘 ∈ 𝐼 ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rrnval.1 | ⊢ 𝑋 = ( ℝ ↑m 𝐼 ) | |
| 2 | 1 | rrnval | ⊢ ( 𝐼 ∈ Fin → ( ℝn ‘ 𝐼 ) = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ ( √ ‘ Σ 𝑘 ∈ 𝐼 ( ( ( 𝑥 ‘ 𝑘 ) − ( 𝑦 ‘ 𝑘 ) ) ↑ 2 ) ) ) ) |
| 3 | 2 | 3ad2ant1 | ⊢ ( ( 𝐼 ∈ Fin ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) → ( ℝn ‘ 𝐼 ) = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ ( √ ‘ Σ 𝑘 ∈ 𝐼 ( ( ( 𝑥 ‘ 𝑘 ) − ( 𝑦 ‘ 𝑘 ) ) ↑ 2 ) ) ) ) |
| 4 | fveq1 | ⊢ ( 𝑥 = 𝐹 → ( 𝑥 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) | |
| 5 | fveq1 | ⊢ ( 𝑦 = 𝐺 → ( 𝑦 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑘 ) ) | |
| 6 | 4 5 | oveqan12d | ⊢ ( ( 𝑥 = 𝐹 ∧ 𝑦 = 𝐺 ) → ( ( 𝑥 ‘ 𝑘 ) − ( 𝑦 ‘ 𝑘 ) ) = ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ) |
| 7 | 6 | oveq1d | ⊢ ( ( 𝑥 = 𝐹 ∧ 𝑦 = 𝐺 ) → ( ( ( 𝑥 ‘ 𝑘 ) − ( 𝑦 ‘ 𝑘 ) ) ↑ 2 ) = ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) |
| 8 | 7 | sumeq2sdv | ⊢ ( ( 𝑥 = 𝐹 ∧ 𝑦 = 𝐺 ) → Σ 𝑘 ∈ 𝐼 ( ( ( 𝑥 ‘ 𝑘 ) − ( 𝑦 ‘ 𝑘 ) ) ↑ 2 ) = Σ 𝑘 ∈ 𝐼 ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) |
| 9 | 8 | fveq2d | ⊢ ( ( 𝑥 = 𝐹 ∧ 𝑦 = 𝐺 ) → ( √ ‘ Σ 𝑘 ∈ 𝐼 ( ( ( 𝑥 ‘ 𝑘 ) − ( 𝑦 ‘ 𝑘 ) ) ↑ 2 ) ) = ( √ ‘ Σ 𝑘 ∈ 𝐼 ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) ) |
| 10 | 9 | adantl | ⊢ ( ( ( 𝐼 ∈ Fin ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( 𝑥 = 𝐹 ∧ 𝑦 = 𝐺 ) ) → ( √ ‘ Σ 𝑘 ∈ 𝐼 ( ( ( 𝑥 ‘ 𝑘 ) − ( 𝑦 ‘ 𝑘 ) ) ↑ 2 ) ) = ( √ ‘ Σ 𝑘 ∈ 𝐼 ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) ) |
| 11 | simp2 | ⊢ ( ( 𝐼 ∈ Fin ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) → 𝐹 ∈ 𝑋 ) | |
| 12 | simp3 | ⊢ ( ( 𝐼 ∈ Fin ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) → 𝐺 ∈ 𝑋 ) | |
| 13 | fvexd | ⊢ ( ( 𝐼 ∈ Fin ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) → ( √ ‘ Σ 𝑘 ∈ 𝐼 ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) ∈ V ) | |
| 14 | 3 10 11 12 13 | ovmpod | ⊢ ( ( 𝐼 ∈ Fin ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) → ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) = ( √ ‘ Σ 𝑘 ∈ 𝐼 ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) ) |