This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The square root of zero is zero. (Contributed by Mario Carneiro, 9-Jul-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sqrt0 | ⊢ ( √ ‘ 0 ) = 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0cn | ⊢ 0 ∈ ℂ | |
| 2 | sqrtval | ⊢ ( 0 ∈ ℂ → ( √ ‘ 0 ) = ( ℩ 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = 0 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) ) | |
| 3 | 1 2 | ax-mp | ⊢ ( √ ‘ 0 ) = ( ℩ 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = 0 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) |
| 4 | id | ⊢ ( 0 ∈ ℂ → 0 ∈ ℂ ) | |
| 5 | sqeq0 | ⊢ ( 𝑥 ∈ ℂ → ( ( 𝑥 ↑ 2 ) = 0 ↔ 𝑥 = 0 ) ) | |
| 6 | 5 | biimpa | ⊢ ( ( 𝑥 ∈ ℂ ∧ ( 𝑥 ↑ 2 ) = 0 ) → 𝑥 = 0 ) |
| 7 | 6 | 3ad2antr1 | ⊢ ( ( 𝑥 ∈ ℂ ∧ ( ( 𝑥 ↑ 2 ) = 0 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) → 𝑥 = 0 ) |
| 8 | 7 | ex | ⊢ ( 𝑥 ∈ ℂ → ( ( ( 𝑥 ↑ 2 ) = 0 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) → 𝑥 = 0 ) ) |
| 9 | sq0i | ⊢ ( 𝑥 = 0 → ( 𝑥 ↑ 2 ) = 0 ) | |
| 10 | 0le0 | ⊢ 0 ≤ 0 | |
| 11 | fveq2 | ⊢ ( 𝑥 = 0 → ( ℜ ‘ 𝑥 ) = ( ℜ ‘ 0 ) ) | |
| 12 | re0 | ⊢ ( ℜ ‘ 0 ) = 0 | |
| 13 | 11 12 | eqtrdi | ⊢ ( 𝑥 = 0 → ( ℜ ‘ 𝑥 ) = 0 ) |
| 14 | 10 13 | breqtrrid | ⊢ ( 𝑥 = 0 → 0 ≤ ( ℜ ‘ 𝑥 ) ) |
| 15 | 0re | ⊢ 0 ∈ ℝ | |
| 16 | eleq1 | ⊢ ( 𝑥 = 0 → ( 𝑥 ∈ ℝ ↔ 0 ∈ ℝ ) ) | |
| 17 | 15 16 | mpbiri | ⊢ ( 𝑥 = 0 → 𝑥 ∈ ℝ ) |
| 18 | rennim | ⊢ ( 𝑥 ∈ ℝ → ( i · 𝑥 ) ∉ ℝ+ ) | |
| 19 | 17 18 | syl | ⊢ ( 𝑥 = 0 → ( i · 𝑥 ) ∉ ℝ+ ) |
| 20 | 9 14 19 | 3jca | ⊢ ( 𝑥 = 0 → ( ( 𝑥 ↑ 2 ) = 0 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) |
| 21 | 8 20 | impbid1 | ⊢ ( 𝑥 ∈ ℂ → ( ( ( 𝑥 ↑ 2 ) = 0 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ↔ 𝑥 = 0 ) ) |
| 22 | 21 | adantl | ⊢ ( ( 0 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( ( ( 𝑥 ↑ 2 ) = 0 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ↔ 𝑥 = 0 ) ) |
| 23 | 4 22 | riota5 | ⊢ ( 0 ∈ ℂ → ( ℩ 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = 0 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) = 0 ) |
| 24 | 1 23 | ax-mp | ⊢ ( ℩ 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = 0 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) = 0 |
| 25 | 3 24 | eqtri | ⊢ ( √ ‘ 0 ) = 0 |