This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any sum over the empty set is zero. (Contributed by Mario Carneiro, 12-Aug-2013) (Revised by Mario Carneiro, 20-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sum0 | ⊢ Σ 𝑘 ∈ ∅ 𝐴 = 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 2 | 1z | ⊢ 1 ∈ ℤ | |
| 3 | 2 | a1i | ⊢ ( ⊤ → 1 ∈ ℤ ) |
| 4 | 0ss | ⊢ ∅ ⊆ ℕ | |
| 5 | 4 | a1i | ⊢ ( ⊤ → ∅ ⊆ ℕ ) |
| 6 | simpr | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℕ ) | |
| 7 | 6 1 | eleqtrdi | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) |
| 8 | c0ex | ⊢ 0 ∈ V | |
| 9 | 8 | fvconst2 | ⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 1 ) → ( ( ( ℤ≥ ‘ 1 ) × { 0 } ) ‘ 𝑘 ) = 0 ) |
| 10 | 7 9 | syl | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( ( ( ℤ≥ ‘ 1 ) × { 0 } ) ‘ 𝑘 ) = 0 ) |
| 11 | noel | ⊢ ¬ 𝑘 ∈ ∅ | |
| 12 | 11 | iffalsei | ⊢ if ( 𝑘 ∈ ∅ , 𝐴 , 0 ) = 0 |
| 13 | 10 12 | eqtr4di | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( ( ( ℤ≥ ‘ 1 ) × { 0 } ) ‘ 𝑘 ) = if ( 𝑘 ∈ ∅ , 𝐴 , 0 ) ) |
| 14 | 11 | pm2.21i | ⊢ ( 𝑘 ∈ ∅ → 𝐴 ∈ ℂ ) |
| 15 | 14 | adantl | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ∅ ) → 𝐴 ∈ ℂ ) |
| 16 | 1 3 5 13 15 | zsum | ⊢ ( ⊤ → Σ 𝑘 ∈ ∅ 𝐴 = ( ⇝ ‘ seq 1 ( + , ( ( ℤ≥ ‘ 1 ) × { 0 } ) ) ) ) |
| 17 | 16 | mptru | ⊢ Σ 𝑘 ∈ ∅ 𝐴 = ( ⇝ ‘ seq 1 ( + , ( ( ℤ≥ ‘ 1 ) × { 0 } ) ) ) |
| 18 | fclim | ⊢ ⇝ : dom ⇝ ⟶ ℂ | |
| 19 | ffun | ⊢ ( ⇝ : dom ⇝ ⟶ ℂ → Fun ⇝ ) | |
| 20 | 18 19 | ax-mp | ⊢ Fun ⇝ |
| 21 | serclim0 | ⊢ ( 1 ∈ ℤ → seq 1 ( + , ( ( ℤ≥ ‘ 1 ) × { 0 } ) ) ⇝ 0 ) | |
| 22 | 2 21 | ax-mp | ⊢ seq 1 ( + , ( ( ℤ≥ ‘ 1 ) × { 0 } ) ) ⇝ 0 |
| 23 | funbrfv | ⊢ ( Fun ⇝ → ( seq 1 ( + , ( ( ℤ≥ ‘ 1 ) × { 0 } ) ) ⇝ 0 → ( ⇝ ‘ seq 1 ( + , ( ( ℤ≥ ‘ 1 ) × { 0 } ) ) ) = 0 ) ) | |
| 24 | 20 22 23 | mp2 | ⊢ ( ⇝ ‘ seq 1 ( + , ( ( ℤ≥ ‘ 1 ) × { 0 } ) ) ) = 0 |
| 25 | 17 24 | eqtri | ⊢ Σ 𝑘 ∈ ∅ 𝐴 = 0 |