This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Bound on the distance between two points in Euclidean space given bounds on the distances in each coordinate. This theorem and rrndstprj1 can be used to show that the supremum norm and Euclidean norm are equivalent. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 13-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rrnval.1 | ⊢ 𝑋 = ( ℝ ↑m 𝐼 ) | |
| rrndstprj1.1 | ⊢ 𝑀 = ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) | ||
| Assertion | rrndstprj2 | ⊢ ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ+ ∧ ∀ 𝑛 ∈ 𝐼 ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ) ) → ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) < ( 𝑅 · ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rrnval.1 | ⊢ 𝑋 = ( ℝ ↑m 𝐼 ) | |
| 2 | rrndstprj1.1 | ⊢ 𝑀 = ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) | |
| 3 | simpl1 | ⊢ ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ+ ∧ ∀ 𝑛 ∈ 𝐼 ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ) ) → 𝐼 ∈ ( Fin ∖ { ∅ } ) ) | |
| 4 | 3 | eldifad | ⊢ ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ+ ∧ ∀ 𝑛 ∈ 𝐼 ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ) ) → 𝐼 ∈ Fin ) |
| 5 | simpl2 | ⊢ ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ+ ∧ ∀ 𝑛 ∈ 𝐼 ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ) ) → 𝐹 ∈ 𝑋 ) | |
| 6 | simpl3 | ⊢ ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ+ ∧ ∀ 𝑛 ∈ 𝐼 ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ) ) → 𝐺 ∈ 𝑋 ) | |
| 7 | 1 | rrnmval | ⊢ ( ( 𝐼 ∈ Fin ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) → ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) = ( √ ‘ Σ 𝑘 ∈ 𝐼 ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) ) |
| 8 | 4 5 6 7 | syl3anc | ⊢ ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ+ ∧ ∀ 𝑛 ∈ 𝐼 ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ) ) → ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) = ( √ ‘ Σ 𝑘 ∈ 𝐼 ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) ) |
| 9 | eldifsni | ⊢ ( 𝐼 ∈ ( Fin ∖ { ∅ } ) → 𝐼 ≠ ∅ ) | |
| 10 | 3 9 | syl | ⊢ ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ+ ∧ ∀ 𝑛 ∈ 𝐼 ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ) ) → 𝐼 ≠ ∅ ) |
| 11 | 5 1 | eleqtrdi | ⊢ ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ+ ∧ ∀ 𝑛 ∈ 𝐼 ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ) ) → 𝐹 ∈ ( ℝ ↑m 𝐼 ) ) |
| 12 | elmapi | ⊢ ( 𝐹 ∈ ( ℝ ↑m 𝐼 ) → 𝐹 : 𝐼 ⟶ ℝ ) | |
| 13 | 11 12 | syl | ⊢ ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ+ ∧ ∀ 𝑛 ∈ 𝐼 ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ) ) → 𝐹 : 𝐼 ⟶ ℝ ) |
| 14 | 13 | ffvelcdmda | ⊢ ( ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ+ ∧ ∀ 𝑛 ∈ 𝐼 ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ) ) ∧ 𝑘 ∈ 𝐼 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
| 15 | 6 1 | eleqtrdi | ⊢ ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ+ ∧ ∀ 𝑛 ∈ 𝐼 ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ) ) → 𝐺 ∈ ( ℝ ↑m 𝐼 ) ) |
| 16 | elmapi | ⊢ ( 𝐺 ∈ ( ℝ ↑m 𝐼 ) → 𝐺 : 𝐼 ⟶ ℝ ) | |
| 17 | 15 16 | syl | ⊢ ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ+ ∧ ∀ 𝑛 ∈ 𝐼 ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ) ) → 𝐺 : 𝐼 ⟶ ℝ ) |
| 18 | 17 | ffvelcdmda | ⊢ ( ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ+ ∧ ∀ 𝑛 ∈ 𝐼 ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ) ) ∧ 𝑘 ∈ 𝐼 ) → ( 𝐺 ‘ 𝑘 ) ∈ ℝ ) |
| 19 | 14 18 | resubcld | ⊢ ( ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ+ ∧ ∀ 𝑛 ∈ 𝐼 ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ) ) ∧ 𝑘 ∈ 𝐼 ) → ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ∈ ℝ ) |
| 20 | 19 | resqcld | ⊢ ( ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ+ ∧ ∀ 𝑛 ∈ 𝐼 ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ) ) ∧ 𝑘 ∈ 𝐼 ) → ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ∈ ℝ ) |
| 21 | simprl | ⊢ ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ+ ∧ ∀ 𝑛 ∈ 𝐼 ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ) ) → 𝑅 ∈ ℝ+ ) | |
| 22 | 21 | rpred | ⊢ ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ+ ∧ ∀ 𝑛 ∈ 𝐼 ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ) ) → 𝑅 ∈ ℝ ) |
| 23 | 22 | resqcld | ⊢ ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ+ ∧ ∀ 𝑛 ∈ 𝐼 ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ) ) → ( 𝑅 ↑ 2 ) ∈ ℝ ) |
| 24 | 23 | adantr | ⊢ ( ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ+ ∧ ∀ 𝑛 ∈ 𝐼 ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ) ) ∧ 𝑘 ∈ 𝐼 ) → ( 𝑅 ↑ 2 ) ∈ ℝ ) |
| 25 | absresq | ⊢ ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ∈ ℝ → ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ) ↑ 2 ) = ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) | |
| 26 | 19 25 | syl | ⊢ ( ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ+ ∧ ∀ 𝑛 ∈ 𝐼 ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ) ) ∧ 𝑘 ∈ 𝐼 ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ) ↑ 2 ) = ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) |
| 27 | 2 | remetdval | ⊢ ( ( ( 𝐹 ‘ 𝑘 ) ∈ ℝ ∧ ( 𝐺 ‘ 𝑘 ) ∈ ℝ ) → ( ( 𝐹 ‘ 𝑘 ) 𝑀 ( 𝐺 ‘ 𝑘 ) ) = ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ) ) |
| 28 | 14 18 27 | syl2anc | ⊢ ( ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ+ ∧ ∀ 𝑛 ∈ 𝐼 ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ) ) ∧ 𝑘 ∈ 𝐼 ) → ( ( 𝐹 ‘ 𝑘 ) 𝑀 ( 𝐺 ‘ 𝑘 ) ) = ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ) ) |
| 29 | simprr | ⊢ ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ+ ∧ ∀ 𝑛 ∈ 𝐼 ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ) ) → ∀ 𝑛 ∈ 𝐼 ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ) | |
| 30 | fveq2 | ⊢ ( 𝑛 = 𝑘 → ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑘 ) ) | |
| 31 | fveq2 | ⊢ ( 𝑛 = 𝑘 → ( 𝐺 ‘ 𝑛 ) = ( 𝐺 ‘ 𝑘 ) ) | |
| 32 | 30 31 | oveq12d | ⊢ ( 𝑛 = 𝑘 → ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) = ( ( 𝐹 ‘ 𝑘 ) 𝑀 ( 𝐺 ‘ 𝑘 ) ) ) |
| 33 | 32 | breq1d | ⊢ ( 𝑛 = 𝑘 → ( ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ↔ ( ( 𝐹 ‘ 𝑘 ) 𝑀 ( 𝐺 ‘ 𝑘 ) ) < 𝑅 ) ) |
| 34 | 33 | rspccva | ⊢ ( ( ∀ 𝑛 ∈ 𝐼 ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ∧ 𝑘 ∈ 𝐼 ) → ( ( 𝐹 ‘ 𝑘 ) 𝑀 ( 𝐺 ‘ 𝑘 ) ) < 𝑅 ) |
| 35 | 29 34 | sylan | ⊢ ( ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ+ ∧ ∀ 𝑛 ∈ 𝐼 ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ) ) ∧ 𝑘 ∈ 𝐼 ) → ( ( 𝐹 ‘ 𝑘 ) 𝑀 ( 𝐺 ‘ 𝑘 ) ) < 𝑅 ) |
| 36 | 28 35 | eqbrtrrd | ⊢ ( ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ+ ∧ ∀ 𝑛 ∈ 𝐼 ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ) ) ∧ 𝑘 ∈ 𝐼 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ) < 𝑅 ) |
| 37 | 19 | recnd | ⊢ ( ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ+ ∧ ∀ 𝑛 ∈ 𝐼 ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ) ) ∧ 𝑘 ∈ 𝐼 ) → ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ∈ ℂ ) |
| 38 | 37 | abscld | ⊢ ( ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ+ ∧ ∀ 𝑛 ∈ 𝐼 ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ) ) ∧ 𝑘 ∈ 𝐼 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ) ∈ ℝ ) |
| 39 | 22 | adantr | ⊢ ( ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ+ ∧ ∀ 𝑛 ∈ 𝐼 ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ) ) ∧ 𝑘 ∈ 𝐼 ) → 𝑅 ∈ ℝ ) |
| 40 | 37 | absge0d | ⊢ ( ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ+ ∧ ∀ 𝑛 ∈ 𝐼 ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ) ) ∧ 𝑘 ∈ 𝐼 ) → 0 ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ) ) |
| 41 | 21 | rpge0d | ⊢ ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ+ ∧ ∀ 𝑛 ∈ 𝐼 ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ) ) → 0 ≤ 𝑅 ) |
| 42 | 41 | adantr | ⊢ ( ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ+ ∧ ∀ 𝑛 ∈ 𝐼 ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ) ) ∧ 𝑘 ∈ 𝐼 ) → 0 ≤ 𝑅 ) |
| 43 | 38 39 40 42 | lt2sqd | ⊢ ( ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ+ ∧ ∀ 𝑛 ∈ 𝐼 ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ) ) ∧ 𝑘 ∈ 𝐼 ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ) < 𝑅 ↔ ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ) ↑ 2 ) < ( 𝑅 ↑ 2 ) ) ) |
| 44 | 36 43 | mpbid | ⊢ ( ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ+ ∧ ∀ 𝑛 ∈ 𝐼 ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ) ) ∧ 𝑘 ∈ 𝐼 ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ) ↑ 2 ) < ( 𝑅 ↑ 2 ) ) |
| 45 | 26 44 | eqbrtrrd | ⊢ ( ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ+ ∧ ∀ 𝑛 ∈ 𝐼 ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ) ) ∧ 𝑘 ∈ 𝐼 ) → ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) < ( 𝑅 ↑ 2 ) ) |
| 46 | 4 10 20 24 45 | fsumlt | ⊢ ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ+ ∧ ∀ 𝑛 ∈ 𝐼 ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ) ) → Σ 𝑘 ∈ 𝐼 ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) < Σ 𝑘 ∈ 𝐼 ( 𝑅 ↑ 2 ) ) |
| 47 | 4 20 | fsumrecl | ⊢ ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ+ ∧ ∀ 𝑛 ∈ 𝐼 ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ) ) → Σ 𝑘 ∈ 𝐼 ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ∈ ℝ ) |
| 48 | 19 | sqge0d | ⊢ ( ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ+ ∧ ∀ 𝑛 ∈ 𝐼 ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ) ) ∧ 𝑘 ∈ 𝐼 ) → 0 ≤ ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) |
| 49 | 4 20 48 | fsumge0 | ⊢ ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ+ ∧ ∀ 𝑛 ∈ 𝐼 ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ) ) → 0 ≤ Σ 𝑘 ∈ 𝐼 ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) |
| 50 | resqrtth | ⊢ ( ( Σ 𝑘 ∈ 𝐼 ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ∈ ℝ ∧ 0 ≤ Σ 𝑘 ∈ 𝐼 ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) → ( ( √ ‘ Σ 𝑘 ∈ 𝐼 ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) ↑ 2 ) = Σ 𝑘 ∈ 𝐼 ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) | |
| 51 | 47 49 50 | syl2anc | ⊢ ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ+ ∧ ∀ 𝑛 ∈ 𝐼 ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ) ) → ( ( √ ‘ Σ 𝑘 ∈ 𝐼 ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) ↑ 2 ) = Σ 𝑘 ∈ 𝐼 ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) |
| 52 | hashnncl | ⊢ ( 𝐼 ∈ Fin → ( ( ♯ ‘ 𝐼 ) ∈ ℕ ↔ 𝐼 ≠ ∅ ) ) | |
| 53 | 4 52 | syl | ⊢ ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ+ ∧ ∀ 𝑛 ∈ 𝐼 ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ) ) → ( ( ♯ ‘ 𝐼 ) ∈ ℕ ↔ 𝐼 ≠ ∅ ) ) |
| 54 | 10 53 | mpbird | ⊢ ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ+ ∧ ∀ 𝑛 ∈ 𝐼 ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ) ) → ( ♯ ‘ 𝐼 ) ∈ ℕ ) |
| 55 | 54 | nnrpd | ⊢ ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ+ ∧ ∀ 𝑛 ∈ 𝐼 ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ) ) → ( ♯ ‘ 𝐼 ) ∈ ℝ+ ) |
| 56 | 55 | rpred | ⊢ ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ+ ∧ ∀ 𝑛 ∈ 𝐼 ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ) ) → ( ♯ ‘ 𝐼 ) ∈ ℝ ) |
| 57 | 55 | rpge0d | ⊢ ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ+ ∧ ∀ 𝑛 ∈ 𝐼 ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ) ) → 0 ≤ ( ♯ ‘ 𝐼 ) ) |
| 58 | resqrtth | ⊢ ( ( ( ♯ ‘ 𝐼 ) ∈ ℝ ∧ 0 ≤ ( ♯ ‘ 𝐼 ) ) → ( ( √ ‘ ( ♯ ‘ 𝐼 ) ) ↑ 2 ) = ( ♯ ‘ 𝐼 ) ) | |
| 59 | 56 57 58 | syl2anc | ⊢ ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ+ ∧ ∀ 𝑛 ∈ 𝐼 ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ) ) → ( ( √ ‘ ( ♯ ‘ 𝐼 ) ) ↑ 2 ) = ( ♯ ‘ 𝐼 ) ) |
| 60 | 59 | oveq2d | ⊢ ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ+ ∧ ∀ 𝑛 ∈ 𝐼 ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ) ) → ( ( 𝑅 ↑ 2 ) · ( ( √ ‘ ( ♯ ‘ 𝐼 ) ) ↑ 2 ) ) = ( ( 𝑅 ↑ 2 ) · ( ♯ ‘ 𝐼 ) ) ) |
| 61 | 23 | recnd | ⊢ ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ+ ∧ ∀ 𝑛 ∈ 𝐼 ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ) ) → ( 𝑅 ↑ 2 ) ∈ ℂ ) |
| 62 | 55 | rpcnd | ⊢ ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ+ ∧ ∀ 𝑛 ∈ 𝐼 ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ) ) → ( ♯ ‘ 𝐼 ) ∈ ℂ ) |
| 63 | 61 62 | mulcomd | ⊢ ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ+ ∧ ∀ 𝑛 ∈ 𝐼 ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ) ) → ( ( 𝑅 ↑ 2 ) · ( ♯ ‘ 𝐼 ) ) = ( ( ♯ ‘ 𝐼 ) · ( 𝑅 ↑ 2 ) ) ) |
| 64 | 60 63 | eqtrd | ⊢ ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ+ ∧ ∀ 𝑛 ∈ 𝐼 ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ) ) → ( ( 𝑅 ↑ 2 ) · ( ( √ ‘ ( ♯ ‘ 𝐼 ) ) ↑ 2 ) ) = ( ( ♯ ‘ 𝐼 ) · ( 𝑅 ↑ 2 ) ) ) |
| 65 | 21 | rpcnd | ⊢ ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ+ ∧ ∀ 𝑛 ∈ 𝐼 ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ) ) → 𝑅 ∈ ℂ ) |
| 66 | 55 | rpsqrtcld | ⊢ ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ+ ∧ ∀ 𝑛 ∈ 𝐼 ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ) ) → ( √ ‘ ( ♯ ‘ 𝐼 ) ) ∈ ℝ+ ) |
| 67 | 66 | rpcnd | ⊢ ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ+ ∧ ∀ 𝑛 ∈ 𝐼 ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ) ) → ( √ ‘ ( ♯ ‘ 𝐼 ) ) ∈ ℂ ) |
| 68 | 65 67 | sqmuld | ⊢ ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ+ ∧ ∀ 𝑛 ∈ 𝐼 ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ) ) → ( ( 𝑅 · ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ↑ 2 ) = ( ( 𝑅 ↑ 2 ) · ( ( √ ‘ ( ♯ ‘ 𝐼 ) ) ↑ 2 ) ) ) |
| 69 | fsumconst | ⊢ ( ( 𝐼 ∈ Fin ∧ ( 𝑅 ↑ 2 ) ∈ ℂ ) → Σ 𝑘 ∈ 𝐼 ( 𝑅 ↑ 2 ) = ( ( ♯ ‘ 𝐼 ) · ( 𝑅 ↑ 2 ) ) ) | |
| 70 | 4 61 69 | syl2anc | ⊢ ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ+ ∧ ∀ 𝑛 ∈ 𝐼 ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ) ) → Σ 𝑘 ∈ 𝐼 ( 𝑅 ↑ 2 ) = ( ( ♯ ‘ 𝐼 ) · ( 𝑅 ↑ 2 ) ) ) |
| 71 | 64 68 70 | 3eqtr4d | ⊢ ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ+ ∧ ∀ 𝑛 ∈ 𝐼 ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ) ) → ( ( 𝑅 · ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ↑ 2 ) = Σ 𝑘 ∈ 𝐼 ( 𝑅 ↑ 2 ) ) |
| 72 | 46 51 71 | 3brtr4d | ⊢ ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ+ ∧ ∀ 𝑛 ∈ 𝐼 ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ) ) → ( ( √ ‘ Σ 𝑘 ∈ 𝐼 ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) ↑ 2 ) < ( ( 𝑅 · ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ↑ 2 ) ) |
| 73 | 47 49 | resqrtcld | ⊢ ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ+ ∧ ∀ 𝑛 ∈ 𝐼 ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ) ) → ( √ ‘ Σ 𝑘 ∈ 𝐼 ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) ∈ ℝ ) |
| 74 | 21 66 | rpmulcld | ⊢ ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ+ ∧ ∀ 𝑛 ∈ 𝐼 ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ) ) → ( 𝑅 · ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ∈ ℝ+ ) |
| 75 | 74 | rpred | ⊢ ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ+ ∧ ∀ 𝑛 ∈ 𝐼 ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ) ) → ( 𝑅 · ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ∈ ℝ ) |
| 76 | 47 49 | sqrtge0d | ⊢ ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ+ ∧ ∀ 𝑛 ∈ 𝐼 ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ) ) → 0 ≤ ( √ ‘ Σ 𝑘 ∈ 𝐼 ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) ) |
| 77 | 74 | rpge0d | ⊢ ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ+ ∧ ∀ 𝑛 ∈ 𝐼 ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ) ) → 0 ≤ ( 𝑅 · ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) |
| 78 | 73 75 76 77 | lt2sqd | ⊢ ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ+ ∧ ∀ 𝑛 ∈ 𝐼 ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ) ) → ( ( √ ‘ Σ 𝑘 ∈ 𝐼 ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) < ( 𝑅 · ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ↔ ( ( √ ‘ Σ 𝑘 ∈ 𝐼 ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) ↑ 2 ) < ( ( 𝑅 · ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ↑ 2 ) ) ) |
| 79 | 72 78 | mpbird | ⊢ ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ+ ∧ ∀ 𝑛 ∈ 𝐼 ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ) ) → ( √ ‘ Σ 𝑘 ∈ 𝐼 ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) < ( 𝑅 · ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) |
| 80 | 8 79 | eqbrtrd | ⊢ ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ+ ∧ ∀ 𝑛 ∈ 𝐼 ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ) ) → ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) < ( 𝑅 · ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) |