This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The limit of a convergent real sequence is real. Corollary 12-2.5 of Gleason p. 172. (Contributed by NM, 10-Sep-2005) (Proof shortened by Mario Carneiro, 10-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | climshft2.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| climshft2.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| climrecl.3 | ⊢ ( 𝜑 → 𝐹 ⇝ 𝐴 ) | ||
| climrecl.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) | ||
| Assertion | climrecl | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climshft2.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | climshft2.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 3 | climrecl.3 | ⊢ ( 𝜑 → 𝐹 ⇝ 𝐴 ) | |
| 4 | climrecl.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) | |
| 5 | 1 | uzsup | ⊢ ( 𝑀 ∈ ℤ → sup ( 𝑍 , ℝ* , < ) = +∞ ) |
| 6 | 2 5 | syl | ⊢ ( 𝜑 → sup ( 𝑍 , ℝ* , < ) = +∞ ) |
| 7 | climrel | ⊢ Rel ⇝ | |
| 8 | 7 | brrelex1i | ⊢ ( 𝐹 ⇝ 𝐴 → 𝐹 ∈ V ) |
| 9 | 3 8 | syl | ⊢ ( 𝜑 → 𝐹 ∈ V ) |
| 10 | eqid | ⊢ ( 𝑘 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑘 ) ) = ( 𝑘 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑘 ) ) | |
| 11 | 1 10 | climmpt | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐹 ∈ V ) → ( 𝐹 ⇝ 𝐴 ↔ ( 𝑘 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑘 ) ) ⇝ 𝐴 ) ) |
| 12 | 2 9 11 | syl2anc | ⊢ ( 𝜑 → ( 𝐹 ⇝ 𝐴 ↔ ( 𝑘 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑘 ) ) ⇝ 𝐴 ) ) |
| 13 | 3 12 | mpbid | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑘 ) ) ⇝ 𝐴 ) |
| 14 | 4 | recnd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 15 | 14 | fmpttd | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑘 ) ) : 𝑍 ⟶ ℂ ) |
| 16 | 1 2 15 | rlimclim | ⊢ ( 𝜑 → ( ( 𝑘 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑘 ) ) ⇝𝑟 𝐴 ↔ ( 𝑘 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑘 ) ) ⇝ 𝐴 ) ) |
| 17 | 13 16 | mpbird | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑘 ) ) ⇝𝑟 𝐴 ) |
| 18 | 6 17 4 | rlimrecl | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |