This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A Cauchy sequence of complex numbers converges to a complex number. Theorem 12-5.3 of Gleason p. 180 (sufficiency part). (Contributed by NM, 20-Dec-2006) (Proof shortened by Mario Carneiro, 15-Feb-2014) (Revised by Mario Carneiro, 8-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | caucvg.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| caucvg.2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) | ||
| caucvg.3 | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) | ||
| caucvg.4 | ⊢ ( 𝜑 → 𝐹 ∈ 𝑉 ) | ||
| Assertion | caucvg | ⊢ ( 𝜑 → 𝐹 ∈ dom ⇝ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caucvg.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | caucvg.2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) | |
| 3 | caucvg.3 | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) | |
| 4 | caucvg.4 | ⊢ ( 𝜑 → 𝐹 ∈ 𝑉 ) | |
| 5 | fveq2 | ⊢ ( 𝑘 = 𝑛 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑛 ) ) | |
| 6 | 5 | cbvmptv | ⊢ ( 𝑘 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑘 ) ) = ( 𝑛 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑛 ) ) |
| 7 | uzssz | ⊢ ( ℤ≥ ‘ 𝑀 ) ⊆ ℤ | |
| 8 | 1 7 | eqsstri | ⊢ 𝑍 ⊆ ℤ |
| 9 | zssre | ⊢ ℤ ⊆ ℝ | |
| 10 | 8 9 | sstri | ⊢ 𝑍 ⊆ ℝ |
| 11 | 10 | a1i | ⊢ ( 𝜑 → 𝑍 ⊆ ℝ ) |
| 12 | 6 | eqcomi | ⊢ ( 𝑛 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑛 ) ) = ( 𝑘 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑘 ) ) |
| 13 | 2 12 | fmptd | ⊢ ( 𝜑 → ( 𝑛 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑛 ) ) : 𝑍 ⟶ ℂ ) |
| 14 | 1rp | ⊢ 1 ∈ ℝ+ | |
| 15 | 14 | ne0ii | ⊢ ℝ+ ≠ ∅ |
| 16 | r19.2z | ⊢ ( ( ℝ+ ≠ ∅ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) → ∃ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) | |
| 17 | 15 3 16 | sylancr | ⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) |
| 18 | eluzel2 | ⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ℤ ) | |
| 19 | 18 1 | eleq2s | ⊢ ( 𝑗 ∈ 𝑍 → 𝑀 ∈ ℤ ) |
| 20 | 19 | a1d | ⊢ ( 𝑗 ∈ 𝑍 → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 → 𝑀 ∈ ℤ ) ) |
| 21 | 20 | rexlimiv | ⊢ ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 → 𝑀 ∈ ℤ ) |
| 22 | 21 | rexlimivw | ⊢ ( ∃ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 → 𝑀 ∈ ℤ ) |
| 23 | 17 22 | syl | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 24 | 1 | uzsup | ⊢ ( 𝑀 ∈ ℤ → sup ( 𝑍 , ℝ* , < ) = +∞ ) |
| 25 | 23 24 | syl | ⊢ ( 𝜑 → sup ( 𝑍 , ℝ* , < ) = +∞ ) |
| 26 | 8 | sseli | ⊢ ( 𝑗 ∈ 𝑍 → 𝑗 ∈ ℤ ) |
| 27 | 8 | sseli | ⊢ ( 𝑘 ∈ 𝑍 → 𝑘 ∈ ℤ ) |
| 28 | eluz | ⊢ ( ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) → ( 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ↔ 𝑗 ≤ 𝑘 ) ) | |
| 29 | 26 27 28 | syl2an | ⊢ ( ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ 𝑍 ) → ( 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ↔ 𝑗 ≤ 𝑘 ) ) |
| 30 | 29 | biimprd | ⊢ ( ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ 𝑍 ) → ( 𝑗 ≤ 𝑘 → 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) |
| 31 | fveq2 | ⊢ ( 𝑛 = 𝑘 → ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑘 ) ) | |
| 32 | eqid | ⊢ ( 𝑛 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑛 ) ) = ( 𝑛 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑛 ) ) | |
| 33 | fvex | ⊢ ( 𝐹 ‘ 𝑛 ) ∈ V | |
| 34 | 31 32 33 | fvmpt3i | ⊢ ( 𝑘 ∈ 𝑍 → ( ( 𝑛 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) |
| 35 | fveq2 | ⊢ ( 𝑛 = 𝑗 → ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑗 ) ) | |
| 36 | 35 32 33 | fvmpt3i | ⊢ ( 𝑗 ∈ 𝑍 → ( ( 𝑛 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑗 ) = ( 𝐹 ‘ 𝑗 ) ) |
| 37 | 34 36 | oveqan12rd | ⊢ ( ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ 𝑍 ) → ( ( ( 𝑛 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑘 ) − ( ( 𝑛 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑗 ) ) = ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) |
| 38 | 37 | fveq2d | ⊢ ( ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ 𝑍 ) → ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑘 ) − ( ( 𝑛 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑗 ) ) ) = ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) ) |
| 39 | 38 | breq1d | ⊢ ( ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ 𝑍 ) → ( ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑘 ) − ( ( 𝑛 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑗 ) ) ) < 𝑥 ↔ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) ) |
| 40 | 39 | biimprd | ⊢ ( ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ 𝑍 ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 → ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑘 ) − ( ( 𝑛 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑗 ) ) ) < 𝑥 ) ) |
| 41 | 30 40 | imim12d | ⊢ ( ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) → ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑘 ) − ( ( 𝑛 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑗 ) ) ) < 𝑥 ) ) ) |
| 42 | 41 | ex | ⊢ ( 𝑗 ∈ 𝑍 → ( 𝑘 ∈ 𝑍 → ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) → ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑘 ) − ( ( 𝑛 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑗 ) ) ) < 𝑥 ) ) ) ) |
| 43 | 42 | com23 | ⊢ ( 𝑗 ∈ 𝑍 → ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) → ( 𝑘 ∈ 𝑍 → ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑘 ) − ( ( 𝑛 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑗 ) ) ) < 𝑥 ) ) ) ) |
| 44 | 43 | ralimdv2 | ⊢ ( 𝑗 ∈ 𝑍 → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 → ∀ 𝑘 ∈ 𝑍 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑘 ) − ( ( 𝑛 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑗 ) ) ) < 𝑥 ) ) ) |
| 45 | 44 | reximia | ⊢ ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ 𝑍 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑘 ) − ( ( 𝑛 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑗 ) ) ) < 𝑥 ) ) |
| 46 | 45 | ralimi | ⊢ ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ 𝑍 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑘 ) − ( ( 𝑛 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑗 ) ) ) < 𝑥 ) ) |
| 47 | 3 46 | syl | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ 𝑍 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑘 ) − ( ( 𝑛 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑗 ) ) ) < 𝑥 ) ) |
| 48 | 11 13 25 47 | caucvgr | ⊢ ( 𝜑 → ( 𝑛 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑛 ) ) ∈ dom ⇝𝑟 ) |
| 49 | 13 25 | rlimdm | ⊢ ( 𝜑 → ( ( 𝑛 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑛 ) ) ∈ dom ⇝𝑟 ↔ ( 𝑛 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑛 ) ) ⇝𝑟 ( ⇝𝑟 ‘ ( 𝑛 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑛 ) ) ) ) ) |
| 50 | 48 49 | mpbid | ⊢ ( 𝜑 → ( 𝑛 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑛 ) ) ⇝𝑟 ( ⇝𝑟 ‘ ( 𝑛 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑛 ) ) ) ) |
| 51 | 6 50 | eqbrtrid | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑘 ) ) ⇝𝑟 ( ⇝𝑟 ‘ ( 𝑛 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑛 ) ) ) ) |
| 52 | eqid | ⊢ ( 𝑘 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑘 ) ) = ( 𝑘 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑘 ) ) | |
| 53 | 2 52 | fmptd | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑘 ) ) : 𝑍 ⟶ ℂ ) |
| 54 | 1 23 53 | rlimclim | ⊢ ( 𝜑 → ( ( 𝑘 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑘 ) ) ⇝𝑟 ( ⇝𝑟 ‘ ( 𝑛 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑛 ) ) ) ↔ ( 𝑘 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑘 ) ) ⇝ ( ⇝𝑟 ‘ ( 𝑛 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑛 ) ) ) ) ) |
| 55 | 51 54 | mpbid | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑘 ) ) ⇝ ( ⇝𝑟 ‘ ( 𝑛 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑛 ) ) ) ) |
| 56 | 1 52 | climmpt | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉 ) → ( 𝐹 ⇝ ( ⇝𝑟 ‘ ( 𝑛 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑛 ) ) ) ↔ ( 𝑘 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑘 ) ) ⇝ ( ⇝𝑟 ‘ ( 𝑛 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑛 ) ) ) ) ) |
| 57 | 23 4 56 | syl2anc | ⊢ ( 𝜑 → ( 𝐹 ⇝ ( ⇝𝑟 ‘ ( 𝑛 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑛 ) ) ) ↔ ( 𝑘 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑘 ) ) ⇝ ( ⇝𝑟 ‘ ( 𝑛 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑛 ) ) ) ) ) |
| 58 | 55 57 | mpbird | ⊢ ( 𝜑 → 𝐹 ⇝ ( ⇝𝑟 ‘ ( 𝑛 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑛 ) ) ) ) |
| 59 | climrel | ⊢ Rel ⇝ | |
| 60 | 59 | releldmi | ⊢ ( 𝐹 ⇝ ( ⇝𝑟 ‘ ( 𝑛 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑛 ) ) ) → 𝐹 ∈ dom ⇝ ) |
| 61 | 58 60 | syl | ⊢ ( 𝜑 → 𝐹 ∈ dom ⇝ ) |